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Introduction-Background

Background:

* Pre-training and fine-tuning paradigm

* Huge number of parameters

Observation:
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* Only a small proportion of parameters will significantly change during fine-tuning.

Model #Total Param | #Trainable Param
BERT base 108M 108M

BERT large 334M 334M

BERT xlarge 1270M 1270M
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Introduction-Motivation

Matrix Product Operator (MPO)

MPO factorizes a matrix into a sequential product of local tensors.

T ey | The auxiliary tensors with only a small

| I BCD ion of 1 le of
proportion ot parameters play a role o
complementing the central tensor

The central tensor with most of
parameters encode the core information
of the original matrix

Figure 1: MPO decomposition for M;y . C

Motivation:
Can we compress the central tensor for parameter reduction and update auxiliary
tensors for lightweight fine-tuning?
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Preliminary

MPO: matrix product operator technique from quantum many-body physics for
compressing PLMs.

o8 X307 2 shape 1Xx3x4x12 12Xx4%x4%x192 192x4x8x384 384x4x6X16 16Xx4x4x%x1
I=[34444] # ratio 0.006% 1.45% 92.74% 5.80% 0.01%
] =1[4,4,8,64]
Almost all the

parameters
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Preliminary

MPO: matrix product operator technique from quantum many-body physics for
compressing PLMs.

Algorithm 1 MPO decomposition for a matrix.

Matrix decomposition with MPO:

Input: matrix M, the number of local tensors n
Output : MPO tensor list {7(x) } 1
cfork=1—-n—-1 do

M[I,J] — M[dk_l X 1 X jk, —1]

UAV' =SVD (M)

U[dk_l Xt X jk, dk] ——F U[dk_l,’ik,jk, dk]

n
MPOM) = | [ 7 [die-s, e o il (1)
k=1

The bond dimension dj, 1s defined by: T0) . gy
M:=)\V'
n end for
- T .= M
: Normalization

=l in-R ol O v

k
die = minC | [ imXjm, | | tmim)- @
m=1

m=k+1

[—

: return {7 k) } k=1
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@ Preliminary

 MPO-based low-rank approximation
» The truncation error induced by the k-th bond dimension dj, is denoted by €,
(called local truncation error)

dg
Truncation error: €k = z Ai (3)
i=dy—d,,
n
Reconstruction error: IM—MPO(M)|| < 2 gl% , (4)

w1 A _1ikjrd;
Compression ratio: p = =1 & 1,k_]k « (5)

n )
k:llk]k




MY B TRREY B

&7/ Gaoling School of Artificial Intelligence

Outline

* Introduction
* Preliminary
* Approach
* Overview
* Part 1: Lightweight fine-tuning
* Part 2: Dimension squeezing
* Discussion
* Experiments
* Conclusion




RS TR

7/ Gaoling School of Artificial Intelligence

Overview

* Motivation
» Can we compress the central tensor for parameter reduction and update auxiliary
tensors for lightweight fine-tuning?
* Solution
» Lightweight fine-tuning with auxiliary tensors
» Dimension squeezing for stacked architecture optimization
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Part 1: Lightweight Fine-tuning

4 )

Layers (0,1e-4] (le-4,1e-3] (le-3,00)
Word embedding  0.66 0.26 0.09 Al X A2 X\ c )X A3 x| A 4
Feed-forward 0.09 0.64 0.27
Self-attention 0.09 0.64 0.27 | | | |
| |
Table 1: Distribution of parameter variations for BERT . .
when fine-tuned on SST-2 task. Trainable Trainable

Ny /

Observation: Variation degree of the Solution: Fix central tensor and update
parameters before and after fine-tuning. auxiliary tensors.
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* Theoretical analysis

“ o

weight

» Entanglement entropy: the metric to measure the information contained in MPO
bonds[ 1], Calculation methods:

dy

Sk = —z vjln v}, k=12, ..,n—1, (6)
j=1

[1] Ze-Feng Gao, Song Cheng, Rong-Qiang He, ZY Xie, Hui-Hai Zhao, Zhong-Yi Lu, and Tao Xiang. 2020. Compressing deep neural
networks by matrix product operators. Physical Review Research, 2(2):023300.
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Part 2: Dimension Squeezing

* Motivation:
» Low-rank approximation on C will largely

reduce total parameters. L
* Fast Reconstruction Error Estimation Algorithm 2 Training with dimension squeezing.
> Criterion Input: : L layers with corresponding central tensor C*) and
. . dimension d"), threshold A and iteration step iter
» Efficiencies

1: Evaluate loss p = model(/nputs)
2: Perform MPO decomposition for each layer
3: for step = 1 — iter do

N Fast Performance Gap Computation 4. Find the layer (™) with the least reconstruction error

5: Compress MPO tensor by truncating 4
> Early Stopping 6:  Fine-tuning auxiliary tensors with {CV} [ fixed
T Evaluate loss p = model(/nputs)
8: if||p—p|[> A then
9: break
10: end if
11: end for

12: return Compressed model
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Discussion

* Comparing with Tucker decomposition

Category Method Inference Time
Tucker4—1)(CP) O(nmd?)

Acker Tucker(g>1) O(nmd + d")
MPO(,,—2(SVD)  O(2md’)
MPO MPO > 2) O(nmd?)

Table 2: Inference time complexities of different low-
rank approximation methods. Here, n denotes the num-
ber of the tensors, m denotes max({ix }7_,) means the
largest i in input list, and d denotes max({d} }?_,)
means the largest dimension d}. in the truncated dimen-
sion list.



Outline

* Introduction

* Preliminary

* Approach

* Experiments
* Experimental Results
* Detailed Analysis

* Conclusion




Experimental Results
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E : ¢ S SST-2 MNLI QNLI CoLA STS-B QQP MRPC RTE WNLI Avg.
xperiments COr¢  (acc) (m_cc) (ace) (mee) (p) (acc) (acc) (acc) (acc)  #Pr/#To(M)

ALBERT b - 90.3 81.6 - - - - - - - 11.6/11.6
ALBERT,p 78.9 90.6 84.5 89.4 53.4 88.2 89.1 88.5 71.1 54.9 11.6/11.6
MPOP 79,7 90.8 83.3 90.5 54.7 89.2 894 89.2 73.3 56.3 1.1/9
MPOPx,;; 80.3 92.2 84.4 914 55.7 89.2 89.6 87.3 76.9 56.3 12.7/12.7
MPOPtun+Lra 804 93.0 84.3 91.3 56.0 89.2 89.0 88.0 78.3 56.3 1.2/1.2.]
MPOPg;- 68.6 86.6 79.2 81.9 15.0 82.5 87.0 74.3 54.2 56.3 1.1/9

Table 3: Performance on GLUE benchmark obtained by fine-tuning ALBERT and MPOP. “ALBERT,;,” and
“ALBERT,.,” denote the results from the original paper (Lan et al., 2020) and reproduced by ours, respectively.
“#Pr” and “#To” denote the number (in millions) of pre-trained parameters and total parameters, respectively.
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Experimental Results

e Ablation results

Experiments  Score SST-2 MNLI QNLI CoLA STS-B QQP MRPC RTE WNLI Avg.

(acc) (m_cc) (acc) (mcc) (p) (ace) (acc) (acc) (acc) #Pr/#To(M)
ALBERT,,, - 903 816 : : : : : . : 11.6/11.6
ALBERT,., 789 906 845 89.4 534 882 8.1 85 711 549  11.6/11.6
MPOP 79.7 908 833 90.5 547 892 894 892 733 563  1.1/9
MPOP;, 803 922  84.4 914 557 892 896 873 769 563  12.7/12.7
MPOP;ii1ra 804 930 843 913 560 892 890 8.0 783 563  12/127
MPOP i, 68.6 866 792 819 150 825 8.0 743 542 563  1.1/9
MPO representation Fine-tuning Experiment
Regular fine-tuning MPOP;
Full-rank

Lightweight fine-tuning MPOP 111k

Truncate rank directly . . . MPOP;,
: : ) Lightweight fine-tuning
Dimension squeezing MPOP
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Experimental Results

e Ablation results

WNLI MRPC RTE Avg. Avg.
Models (acc) (acc) (acc) #Pr/#To(M) Models SST-2 MRPC RTE HPr (M)

BERT 56.3 85.5 70.0 110/110 BERTi0_12 91.9 76.5 67.2 45.7
MPOPg 56.3 84.3 70.8 7.7/70.4 BERT;_12 91.7 75.3 62.8 38.6
DistlIBERT 563 841 614  66/66 BERTs 914 921  bld Sl
MPOPp 56.3 84.3 61.7 4.0/43.4 MPOPg 92.6 84.3 70.8 10.1
MobileBERT 56.2 86.0 63.5 235:3125:3
MPOPy 56.2 85.3 65.7 4.4/15.4 Table 5: Comparison of different fine-tuning strategies

on three GLUE tasks. The subscript number in BERT )
Table 4: Evaluation with different BERT variants. denotes the index of the layers to be fine-tuned.
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Experimental Results

e Ablation results
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(a) CPD v.s. MPO. (b) # of local tensors.

Figure 2: Comparison of different low-rank approxima-
tion variants. x-axis denotes the compression ratio (p
in Eq. (5)) and y-axis denotes the reconstruction error,
measured in the Frobenius norm.
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Conclusion

We proposed an MPO-based PLM compression method. With MPO decomposition,
we were able to reorganize and aggregate information 1n central tensors effectively.
Inspired by this, we make following contributions:

» Lightweight fine-tuning strategy: we largely reduced the parameters to be
fine-tuned by only updating the auxiliary tensors.

» Dimension squeezing algorithm: we could optimize low-rank approximation
over stacked network architectures.



Source code

Thank you


https://github.com/RUCAIBox/MPOP

