

Enabling Lightweight Fine-tuning for Pretrained Language Model Compression based on Matrix Product Operators Peiyu Liu^{*}, Ze-Feng Gao^{*}, Wayne Xin Zhao[†], Z.Y. Xie, Zhong-Yi Lu[†], Ji-Rong Wen

* equal contribution† corresponding author

- Introduction
 - Background
 - Motivation
- Preliminary
- Approach
- Experiments
- Conclusion

Introduction-Background

Background:

- Pre-training and fine-tuning paradigm
- Huge number of parameters

Observation:

• Only a small proportion of parameters will significantly change during fine-tuning.

Model	#Total Param	#Trainable Param		
BERT_base	108M	108M		
BERT_large	334M	334M		
BERT_xlarge	1270M	1270M		

Matrix Product Operator (MPO)

MPO factorizes a matrix into a sequential product of local tensors.

Figure 1: MPO decomposition for $M_{i \times j}$.

Motivation:

(11)

 $\{A_i\}$

The central tensor with most of parameters encode the core information of the original matrix

Can we compress the central tensor for parameter reduction and update auxiliary tensors for lightweight fine-tuning?

- Introduction
- Preliminary
- Approach
- Experiments
- Conclusion

MPO: matrix product operator technique from quantum many-body physics for compressing PLMs.

Preliminary

MPO: matrix product operator technique from quantum many-body physics for compressing PLMs.

Matrix decomposition with MPO:

$$MPO(M) = \prod_{k=1}^{n} \mathcal{T}_{(k)}[d_{k-1}, i_k, j_k, d_k], (1)$$

The bond dimension d_k is defined by:

The bond dimension d_k is defined by:

$$d_k = \min(\prod_{m=1}^k i_m \times j_m, \prod_{m=k+1}^n i_m \times j_m).$$
 (2)

Algorithm 1 MPO decomposition for a matrix.

Input: matrix **M**, the number of local tensors n **Output** : MPO tensor list $\{\mathcal{T}_{(k)}\}_{k=1}^{n}$ 1: for $k = 1 \rightarrow n - 1$ do $\mathbf{M}[I,J] \longrightarrow \mathbf{M}[d_{k-1} \times i_k \times j_k,-1]$ 2: $\mathbf{U}\lambda\mathbf{V}^{\top} = \mathrm{SVD}\left(\mathbf{M}\right)$ 3: $\mathbf{U}[d_{k-1} \times i_k \times j_k, d_k] \longrightarrow \mathcal{U}[d_{k-1}, i_k, j_k, d_k]$ 4: $\mathcal{T}^{(k)}:=\mathcal{U}$ 5: $\mathbf{M} := \lambda \mathbf{V}^{ op}$ 6: 7: end for 8: $\mathcal{T}^{(n)} := \mathbf{M}$ 9: Normalization 10: return $\{\mathcal{T}_{(k)}\}_{k=1}^{n}$

• MPO-based low-rank approximation

The truncation error induced by the *k*-th bond dimension d_k is denoted by ϵ_k (called local truncation error) $\frac{d_k}{d_k}$

Truncation error:

Reconstruction error:

Compression ratio:

$$\epsilon_{k} = \sum_{i=d_{k}-d'_{k}} \lambda_{i}, \quad (3)$$

$$\|M-MPO(M)\|_{F} \leq \sqrt{\sum_{k=1}^{n-1} \epsilon_{k}^{2}}, \quad (4)$$

$$\rho = \frac{\sum_{k=1}^{n} d'_{k-1} i_{k} j_{k} d'_{k}}{\prod_{k=1}^{n} i_{k} j_{k}}, \quad (5)$$

- Introduction
- Preliminary
- Approach
 - Overview
 - Part 1: Lightweight fine-tuning
 - Part 2: Dimension squeezing
 - Discussion
- Experiments
 - Conclusion

Overview

- Motivation
 - Can we compress the central tensor for parameter reduction and update auxiliary tensors for lightweight fine-tuning?
- Solution
 - Lightweight fine-tuning with auxiliary tensors
 - Dimension squeezing for stacked architecture optimization

 A_3

X

Trainable

 A_4

Part 1: Lightweight Fine-tuning

Layers	(0,1e-4]	(1e-4,1e-3]	(1e-3,∞)
Word embedding	0.66	0.26	0.09
Feed-forward	0.09	0.64	0.27
Self-attention	0.09	0.64	0.27

Table 1: Distribution of parameter variations for BERT when fine-tuned on SST-2 task.

Observation: Variation degree of the parameters before and after fine-tuning.

Solution: Fix central tensor and update auxiliary tensors.

×

С

 A_1

 A_2

×

Trainable

Part 1: Lightweight Fine-tuning

• Theoretical analysis

Entanglement entropy: the metric to measure the information contained in MPO bonds[1], Calculation methods:

$$S_k = -\sum_{j=1}^{d_k} v_j \ln v_j, \qquad k = 1, 2, ..., n - 1,$$
 (6)

[1] Ze-Feng Gao, Song Cheng, Rong-Qiang He, ZY Xie, Hui-Hai Zhao, Zhong-Yi Lu, and Tao Xiang. 2020. Compressing deep neural networks by matrix product operators. Physical Review Research, 2(2):023300.

Part 2: Dimension Squeezing

• Motivation:

Low-rank approximation on C will largely reduce total parameters.

- Fast Reconstruction Error Estimation
 Criterion
 - Efficiencies
- Fast Performance Gap Computation
 Early stopping

Discussion

• Comparing with Tucker decomposition

Category	Method	Inference Time
Tucker	Tucker $_{(d=1)}(CP)$ Tucker $_{(d>1)}$	$\mathcal{O}(nmd^2)\ \mathcal{O}(nmd+d^n)$
MPO	$\frac{\text{MPO}_{(n=2)}(\text{SVD})}{\text{MPO}_{(n>2)}}$	${ {\cal O}(2md^3) \over {\cal O}(nmd^3)}$

Table 2: Inference time complexities of different lowrank approximation methods. Here, n denotes the number of the tensors, m denotes $\max(\{i_k\}_{k=1}^n)$ means the largest i_k in input list, and d denotes $\max(\{d'_k\}_{k=0}^n)$ means the largest dimension d'_k in the truncated dimension list.

- Introduction
- Preliminary
- Approach
- Experiments
 - Experimental Results
 - Detailed Analysis
- Conclusion

Experiments	Score	SST-2 (acc)	MNLI (m_cc)	QNLI (acc)	CoLA (mcc)	STS-B (ρ)	QQP (acc)	MRPC (acc)	RTE (acc)	WNLI (acc)	Avg. #Pr/#To(M)	
$\begin{array}{l} \textbf{ALBERT}_{\mathrm{pub}} \\ \textbf{ALBERT}_{\mathrm{rep}} \\ \textbf{MPOP} \end{array}$	- 78.9 79.7	90.3 90.6 90.8	81.6 84.5 83.3	- 89.4 90.5	- 53.4 54.7	- 88.2 89.2	- 89.1 89.4	- 88.5 89.2	- 71.1 73.3	- 54.9 56.3	11.6/11.6 11.6/11.6 1.1/9	
$\begin{array}{c} MPOP_{\rm full} \\ MPOP_{\rm full+LFA} \\ MPOP_{\rm dir} \end{array}$	80.3 80.4 68.6	92.2 93.0 86.6	84.4 84.3 79.2	91.4 91.3 81.9	55.7 56.0 15.0	89.2 89.2 82.5	89.6 89.0 87.0	87.3 88.0 74.3	76.9 78.3 54.2	56.3 56.3 56.3	12.7/12.7 1.2/12.7 1.1/9	

Table 3: Performance on GLUE benchmark obtained by fine-tuning ALBERT and MPOP. "ALBERT_{pub}" and "ALBERT_{rep}" denote the results from the original paper (Lan et al., 2020) and reproduced by ours, respectively. "#Pr" and "#To" denote the number (in millions) of pre-trained parameters and total parameters, respectively.

Experimental Results

• Ablation results

Experiments	Score	SST-2 (acc)	MNLI (m_cc)	QNLI (acc)	CoLA (mcc)	STS-Β (ρ)	QQP (acc)	MRPC (acc)	RTE (acc)	WNLI (acc)	Avg. #Pr/#To(M)
$\begin{array}{l} ALBERT_{\rm pub} \\ ALBERT_{\rm rep} \\ MPOP \end{array}$	-	90.3	81.6	-	-	-	-	-	-	-	11.6/11.6
	78.9	90.6	84.5	89.4	53.4	88.2	89.1	88.5	71.1	54.9	11.6/11.6
	79.7	90.8	83.3	90.5	54.7	89.2	89.4	89.2	73.3	56.3	1.1/9
$\begin{array}{c} MPOP_{\rm full} \\ MPOP_{\rm full+LFA} \\ MPOP_{\rm dir} \end{array}$	80.3	92.2	84.4	91.4	55.7	89.2	89.6	87.3	76.9	56.3	12.7/12.7
	80.4	93.0	84.3	91.3	56.0	89.2	89.0	88.0	78.3	56.3	1.2/12.7
	68.6	86.6	79.2	81.9	15.0	82.5	87.0	74.3	54.2	56.3	1.1/9

MPO representation	Fine-tuning	Experiment
	Regular fine-tuning	MPOP _{full}
Full-rank	Lightweight fine-tuning	MPOP _{full+LFA}
Truncate rank directly	Light traight fing trains	MPOP _{dir}
Dimension squeezing		МРОР

Experimental Results

• Ablation results

Models	WNLI	VNLI MRPC		Avg.
	(acc)	(acc) (acc)		#Pr/#To(M)
BERT	56.3	85.5	70.0	110/110
MPOP _B	56.3	84.3	70.8	7.7/70.4
DistilBERT	56.3	84.1	61.4	66/66
MPOP _D	56.3	84.3	61.7	4.0/43.4
$\begin{array}{l} \textbf{MobileBERT} \\ \textbf{MPOP}_{M} \end{array}$	56.2	86.0	63.5	25.3/25.3
	56.2	85.3	65.7	4.4/15.4

Table 4: Evaluation with different BERT variants.

Models	SST-2	MRPC	RTE	Avg. #Pr(M)
BERT ₁₀₋₁₂	91.9	76.5	67.2	45.7
$BERT_{11-12}$	91.7	75.3	62.8	38.6
$BERT_{12}$	91.4	72.1	61.4	31.5
MPOPB	92.6	84.3	70.8	10.1

Table 5: Comparison of different fine-tuning strategies on three GLUE tasks. The subscript number in $\text{BERT}_{(\cdot)}$ denotes the index of the layers to be fine-tuned.

Experimental Results

• Ablation results

Figure 2: Comparison of different low-rank approximation variants. x-axis denotes the compression ratio (ρ in Eq. (5)) and y-axis denotes the reconstruction error, measured in the Frobenius norm.

- Introduction
- Preliminary
- Approach
- Experiments
- Conclusion

Conclusion

We proposed an MPO-based PLM compression method. With MPO decomposition, we were able to reorganize and aggregate information in central tensors effectively. Inspired by this, we make following contributions:

Lightweight fine-tuning strategy: we largely reduced the parameters to be fine-tuned by only updating the auxiliary tensors.
 Dimension squeezing algorithm: we could optimize low-rank approximation over stacked network architectures.

Q&A

Source code https://github.com/RUCAIBox/MPOP

Thank you

