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ABSTRACT 

Altermagnetism, a new magnetic phase, has been theoretically proposed and experimentally verified to be 
distinct from ferromagnetism and antiferromagnetism. Although altermagnets have been found to possess 
many exotic physical properties, the limited availability of known altermagnetic materials hinders the study 
of such properties. Hence, discovering more types of altermagnetic materials with different properties is 
crucial for a comprehensive understanding of altermagnetism and thus facilitating new applications in the 
next generation of information technologies, e.g. storage devices and high-sensitivity sensors. Since each 
altermagnetic material has a unique crystal structure, we propose an automated discovery approach 
empowered by an artificial intelligence (AI) search engine that employs a pre-trained graph neural network 
to learn the intrinsic features of the material crystal structure, followed by fine-tuning a classifier with limited 
positive samples to predict the altermagnetism probability of a given material candidate. Finally, we 
successfully discovered 50 new altermagnetic materials that cover metals, semiconductors and insulators, 
confirmed by first-principles electronic structure calculations. The wide range of electronic structural 
characteristics reveals that various novel physical properties manifest in these newly discovered 
altermagnetic materials, e.g. the anomalous Hall effect, anomalous Kerr effect and topological property. It is 
worth noting that we discovered four i -wave altermagnetic materials for the first time. Overall, the AI search 
engine performs much better than human experts and suggests a set of new altermagnetic materials with 
unique properties, outlining its potential for accelerated discovery of the materials with targeted 
properties. 
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at the left and right of the double vertical bar act 
only on the spin space and lattice space, respec- 
tively; the notation C⊥ 

2 represents the 180
◦ rota- 

tion perpendicular to the spin direction; the no- 
tation I, T, Ri and τ denote space inversion, time 
reversal, rotation/mirror and fractional translation 
operations, respectively. Because of the absence of 
spin symmetry { C⊥ 

2 T || IT } or { C⊥ 

2 || τ } , altermag- 
nets have spin splitting in electronic bands. Un- 
like isotropic k -independent s -wave spin splitting in 
ferromagnets, altermagnets can form anisotropic k - 
dependent d-wave, g-wave and i -wave spin splitting 
according to different spin group symmetries [2 ]. 
Moreover, altermagnets not only have spin-splitting 
bands deriving from magnetic exchange interaction, 
which is the same as ferromagnets, but they also 
have unique extraordinary spin-splitting bands de- 
riving from anisotropic electric crystal potential and 
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NTRODUCTION 

agnetic materials form a cornerstone of our mod-
rn information society. Generally, magnetism is
ategorized into ferromagnetism and antiferromag-
etism. Recently, based on the spin group formal-
sm [1 ], a new magnetic phase called altermagnetism
as been theoretically proposed [2 ,3 ], which ex-
ibits numerous novel physical properties [2 –18 ],
aving the path way for new avenues in the next
eneration of information technology. Both alter-
agnets and conventional antiferromagnets have
ompensated antiparallel spin sublattices, resulting
n vanishing net magnetic momentum. The com-
ensated antiparallel spin sublattices are connected
y the spin symmetry { C⊥ 

2 || I} or { C⊥ 

2 || τ } trans-
ormation for conventional antiferromagnets, but
y the spin symmetry { C⊥ 

2 || Ri } transformation for

ltermagnets [2 ]. Here, the symmetry operations 
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agnetic exchange interaction [2 ]. In some alter-
agnets, the spin splitting can even have electron-
olt magnitudes in parts of the Bri l louin zone [2 –
 ]. The anisotropic k -dependent spin splitting can
esult in a unique spin current by electrical means
n d-wave altermagnets [5 ]. Based on the unique
pin current, the spin-splitter torque in d-wave alter-
agnets was proposed in theory [5 ] and confirmed
y experiments [6 ,7 ], which may circumvent lim-
tations of spin-transfer torque (ferromagnets) and
pin-orbit torque (conventional antiferromagnets or
on-magnetic materials with strong spin-orbit cou-
ling) in magnetic memory devices [5 ]. Meanwhile,
he giant tunneling magnetoresistance [4 ] and gi-
nt piezomagnetism [19 ] can also be proposed in
ltermagnets based on the anisotropic k -dependent
pin splitting. In the relativistic case, the time-
eversal symmetry-breaking macroscopic phenom-
na, including quantum anomalous Hall [8 ], anoma-
ous Hall [9 ,10 ] and anomalous Kerr effects [11 ],
ave been predicted by theories in altermagnets;
oreover, the anomalous Hall effect has been sup-
orted by experiments [12 ,13 ]. 
On the other hand, magnetic topological phases

nd their exotic physical properties have recently at-
racted intensive experimental and theoretical atten-
ion. Very recently, some topological semimetal and
nsulator phases protected by spin group symmetry
ave been proposed in theory [20 –26 ]. Consider-
ng the facts that altermagnets are described by spin
roup symmetry and that the symmetry landscape
f spin space groups is more plentiful than that of
he conventional magnetic space groups, more new
agnetic topological phases and their exotic phys-

cal properties may thus be proposed theoretically
n altermagnets. Nevertheless, altermagnets are hith-
rto in the early stage of research. Since there are
any exotic physical properties that have been dis-
overed and new physical phenomena to be dis-
overed, altermagnets are bound to attract inten-
ive theoretical and experimental attention in the
ear future. Very recently, based on spin group the-
ry and known magnetic structures, 141 altermag-
etic materials have been discovered [23 ]. However,
nown altermagnetic materials are sti l l limited so far.
ence, there is an urgent need to discover more al-
ermagnetic materials for a comprehensive under-
tanding of altermagnetism, thus facilitating new
pplications in the next generation of information
echnology. 
Conventional discovery methods primarily rely

n the known magnetic structures and the corre-
ponding spin space group. Such approaches are
pplicable only when the magnetic structure infor-
ation is known a priori, which has a clear lim-

tation if such information is missing. However,
Page 2 of 18
there exist over 90 0 0 0 magnetic materials docu- 
mented in the Materials Project [27 ], among which 
only 2138 magnetic structures are known (see the 
MAGNDATA database [28 ]). The reason why the 
magnetic structures of only about 2% of magnetic 
materials have been determined is that it is indeed a 
non-trivial task that relies on extremely costly neu- 
tron scattering experimentation. Therefore, it is cru- 
cial to develop a method that breaks the bottleneck 
limitation of missing magnetic structure informa- 
tion, enabling the discovery of new altermagnetic 
materials without any prior knowledge of such in- 
formation. On the other hand, the altermagnetic 
property is closely related to the material crystal 
structure, which provides a basis for the applica- 
tion of artificial intelligence (AI) methods to the 
discovery of altermagnetic materials. Moreover, the 
emerging AI technology has found many key appli- 
cations in the discovery of materials [29 ]. For in- 
stance, AI was used for predicting organic compound 
synthesis in organic chemistry [30 ], planning chem- 
ical synthesis pathways [31 ], iterative synthesis of 
small molecules [32 ], accelerating the discovery of 
self-assembling peptides [33 ], designing eutectic sol- 
vents [34 ] and analyzing de novo protein mechan- 
ics and structures [35 ,36 ]. Recently, deep learning 
methods have been applied to the prediction of crys- 
tal materials with targeted properties [37 ,38 ]. These 
methods general ly uti lize a large amount of crystal 
structure data to train graph neural network (GNN) 
models in an end-to-end manner, without explicit 
reference to the physical laws underlying these ma- 
terial properties. The trained model could predict 
key physical properties of crystal materials, such 
as the formation energy and band gap, based on 
a rich training dataset containing over 104 labeled 
samples [37 ]. However, such methods are not suit- 
able for discovering altermagnetic materials, because 
of the fact that the known positive samples are 
limited. 

In this article, we introduce an AI search en- 
gine, as shown in Fig. 1 , that combines deep model
pre-training and fine-tuning techniques and physics- 
based approaches (e.g. symmetry analysis and 
first-principles electronic structure calculations) 
to discover new altermagnetic materials under the 
condition of limited labeled samples. In particular, 
we pre-train a self-supervised GNN [39 ] based on 
optimal transport theory [40 ] to learn the intrinsic 
features of the crystal structure of materials, and 
refine a downstream classifier with limited positive 
samples to predict the altermagnetism probabil- 
ity of a given material candidate. First, based on 
symmetry analysis, we constructed the pre-training 
dataset (containing 68 116 materials), fine-tuning 
the dataset (containing 25 739 materials, namely, 
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Figure 1. Workflow of the pre-trained model for searching altermagnetic materials. (a) Construction of candidate material datasets using high- 
throughput screening and symmetry analysis (see Fig. S1 for details). (b) The pre-training autoencoder framework for crystal materials. The input 
of the model is the crystal structure. Each crystal structure can be represented as a multiedge GNN. The encoder is built by the graph convolutional neu- 
ral network. The decoder is built on the Waterstein neighborhood reconstruction. (c) The fine-tuning procedure with loading pre-training stage weight 
matrix. (d) The prediction procedure by inputting candidate materials. (e) Validation of the altermagnetic property via first-principles electronic structure 
calculations. 
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5 591 negative samples plus 148 positive samples)
nd candidate dataset (containing 42 377 materials)
rom the Materials Project [41 ]. Next, we pre-
rained a GNN model (composed of an encoder and
 decoder) for crystal materials, based on optimal
ransport theory. Once the pre-training was done,
e fine-tuned the encoder on the fine-tuning dataset
o obtain a classifier model. Then, the structured
aterial information from the candidate dataset was

nput into the classifier model to quantify the prob-
bility as an indicator of whether each material is an
ltermagnetic material. We filtered out the materials
ith probabilities greater than 0.9 as the candidate
ltermagnetic materials. Finally, we employed the
rst-principles electronic structure calculations
o estimate the ground magnetic structure of the
andidate material to identify altermagnets. (It has
een quite common to use first-principles electronic
tructure calculations, e.g. density functional theory
DFT), to predict the material property, which has
een widely used in the community and proven
o possess excellent alignment with experimental
esults for crystal materials [42 –45 ].) Furthermore,
he confirmed altermagnetic materials were added
o the fine-tuning dataset for an iterative process of
ne-tuning and classifier prediction, reinforcing the
Page 3 of 18
predictability of the model. The efficacy of this AI 
search engine has been well demonstrated. 

Of the 91 649 total candidates, we discovered 
50 new altermagnetic materials covering metals, 
semiconductors and insulators. The wide range of 
electronic structural properties implies that various 
novel physical properties appear in these newly dis- 
covered altermagnetic materials, e.g. the anomalous 
Hall effect, anomalous Kerr effect and topological 
property, as demonstrated in theoretical analyses. It 
is also worth noting that we discovered four i -wave
altermagnetic materials for the first time, fil ling the 
gap in the literature. As a result, our proposed AI
search engine successfully breaks the bottleneck lim- 
itation of existing discovery methods based on sym- 
metry delimited rules, serves as a critical counterpart 
to such methods and is applicable to discovering new 

altermagnetic materials directly from a large set of 
candidates without any prior knowledge of the mag- 
netic structure information. We conclude that the AI 
search engine suggests a set of new altermagnetic ma- 
terials with unique properties, outlining its potential 
for accelerated discovery of the materials with target- 
ing properties. We also discuss the pathway of devel- 
oping pre-trained graph models for the discovery of 
other types of materials. 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf066#supplementary-data
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ESULTS 

ataset screening via symmetry analysis 
ur goal is to screen altermagnetic materials from
he Materials Project [27 ], which contains 154 718
rystal materials. Since this materials database in-
ludes both magnetic and non-magnetic materials,
e first filtered out materials containing magnetic
toms. In this work, we considered materials with
d transition metals or 4f rare earth elements. After
ltering and de-duplication, we obtained 91 649
otential magnetic materials. Because of the com-
lexity of the magnetic properties of materials with
ultiple magnetic atoms, we further excluded such
aterials, resulting in 68 116 potential magnetic
aterials, which constitute the pre-training dataset. 
Altermagnetism is characterized by compensated

ntiparallel spin sublattices connected by the spin
ymmetry { C⊥ 

2 || Ri } transformation, but not con-
ected by the spin symmetry { C⊥ 

2 || I} or { C⊥ 

2 || τ }
ransformation. Since the space groups P 1(1) and
1̄ (2) do not have Ri symmetry, all materials with
pace groups P 1 and P1̄ symmetry are excluded from
he pre-training dataset. If collinear antiferromag-
ets have type-IV magnetic space group symmetry,
heir compensated antiparallel spin sublattices must
e connected by the spin symmetry { C⊥ 

2 || τ } trans-
ormation in a non-relativistic case. So al l col linear
ntiferromagnetic materials with type-IV magnetic
pace group symmetry are conventional antiferro-
agnets but not altermagnets. Different from anti-
erromagnetic materials with the type-IV magnetic
pace group symmetry, the magnetic cell and crystal
ell of materials with type-III magnetic space group
ymmetry are usually the same, which leads to these
aterials without the spin symmetry { C⊥ 

2 || τ } . If the
agnetic cell of a collinear antiferromagnet is a su-
ercell, whereas its spin arrangement breaks the spin
ymmetry { C⊥ 

2 || τ } , then the collinear antiferromag-
et may be a supercell altermagnet [46 ]. Although
here exist four known supercell altermagnetic mate-
ials, we do not consider this situation and exclude
hem in the positive samples. Since compensated an-
iparallel spin sublattices in altermagnets require the
andidate magnetic materials to have an even num-
er of magnetic atoms in their crystal primitive cell,
e first ruled out 18 546 magnetic materials with an
dd number of magnetic atoms in the primitive crys-
al cell from the pre-training dataset. 
Furthermore, magnetic materials with type-III
agnetic space group symmetry can be divided

nto two classes according to space-inversion
ymmetry. If the crystal structure of a collinear
ntiferromagnet has no combination of space-
nversion and time-reversal symmetry, such a
aterial must be altermagnetic. Otherwise, if the
Page 4 of 18
collinear antiferromagnetic material has only a pair 
of spin antiparallel magnetic atoms in the prim- 
itive crystal cell that are not located at invariant 
space-inversion points, the pair of spin antiparallel 
magnetic atoms must be connected by the spin sym- 
metry { C⊥ 

2 || I} . This class collinear antiferromagnets 
are not altermagnetic materials (7045 in total). 
Therefore, based on symmetry analysis, we screened 
out 25 591 non-altermagnetic materials. These 
materials, along with the known 148 altermagnetic 
materials (e.g. as positive samples), constitute the 
fine-tuning dataset. By removing the 25 591 non- 
altermagnetic materials and positive samples from 

the pre-training dataset, we obtained the candidate 
dataset (42 377 materials). The aforementioned 
screening process is depicted in Fig. S1. In the 
following, we train a neural network to screen and 
predict altermagnetic materials from the candidate 
dataset. 

Pre-training the GNN for material 
discovery 
Although AI methods have shown great potential 
for material screening and discovery, there sti l l re- 
main numerous challenges in the field of discover- 
ing altermagnetic materials that have not yet been 
accommodated in existing research practices. In par- 
ticular, training a reliable predictive model under 
the condition of limited labels is intractable, e.g. the 
number of known altermagnetic materials, as posi- 
tive samples (training labels), is limited (only 148 al- 
termagnetic materials [3 ,23 ]). We address this chal- 
lenge by introducing a pre-training and fine-tuning 
technique, which was first proposed in the natu- 
ral language processing field [47 ], and subsequently 
demonstrated with remarkable capabilities for com- 
puter vision [48 ] and bioinformatics [49 ]. Such a 
technique pre-trains a self-supervised model first, 
then refines it for a specific downstream task with 
limited data, meanwhile maintaining a boosted per- 
formance. Since each crystal material has a unique 
structure-property relationship, e.g. the magnetic- 
property-like spin pattern is closely related to the 
crystal structure information, we hypothesize that 
there is a functional correspondence between the 
spin pattern and the crystal structure for a given ma- 
terial candidate. Hence, we represent the material 
crystal structures by multiedge graphs and establish 
a pre-trained neural network model to extract their 
corresponding latent features. The discovery of an 
altermagnetic material process is then treated as a 
downstream task by refining a classifier model based 
on limited positive samples (e.g. 148 available alter- 
magnetic materials). 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf066#supplementary-data
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Figure 2. Network architectures of the auto-encoder and classifier. (a) Details of the auto-encoder model. The encoder 
consists of three graph convolution layers denoted by φ (1) , φ (2) , φ (3) , whose inputs are node features h(t ) i and neighbor fea- 
tures H (t ) 

Ni 
, where t = 0 , 1 , 2 , respectively. The decoder is composed of a decoder module ψs for reconstructing initial node 

features and three decoder modules ψ (1) 
p , ψ

(2) 
p , ψ

(3) 
p for reconstructing a neighborhood set of node features. We minimize 

the weighted sum of the reconstruction loss functions for both decoder modules. (b) Details of the ψp module in the de- 
coder. The ψp module includes three MLPs ( χμ, χσ and χp ) and a Gaussian sampler, while the ψs module is composed 
of a single MLP. (c) Details of the classifier model. The node features h(0) i and the neighborhood set of node features H (0) 

Ni 

are fed into the pre-trained encoder. The output node features h(3) i are then transformed to a latent vector hg by a pooling 
layer. Finally, another MLP and softmax module is designed to output the probability that quantifies whether the material is 
altermagnetic. 
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As detailed in the symmetry analysis above, we
rst construct the pre-training dataset and candidate
aterial dataset based on high-throughput screen-

ng and symmetry analysis (see Fig. 1 (a)). The pre-
rained model is based on a GNN that leverages
aterial crystal structure information [37 ], consist-

ng of a graph convolutional network encoder, and
 decoder that reconstructs graph features based
n optimal transport theory [50 ]. Figure 1 (b) de-
icts the schematic of the network, with the de-
ailed architecture shown in Fig. 2 . The process of
nputting crystal structures into the model begins
Page 5 of 18
with a pre-processing stage, where the crystal struc- 
ture information is transformed into a graph repre- 
sentation. Then, we pre-train the model based on 
the pre-training dataset that contains 68 116 materi- 
als, and then fine-tune the pre-trained model based 
on the fine-tuning dataset (148 altermagnetic ma- 
terials plus 25 591 non-altermagnetic materials; see 
Fig. 1 (c)). (Note that there are some biases in the
negative sampling, but its influence on the predic- 
tive performance of our AI model is negligible. This 
is because the number of negative samples is sig- 
nificantly larger, being 172 times greater than the 
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umber of positive samples.) During the fine-tuning,
e utilize the pre-trained encoder and employ
p-sampling techniques (duplication and rotation)
o balance the number of positive and negative sam-
les for a binary classification task. Afterward, we
an obtain the classifier model, which is then used
o screen the altermagnetic materials (Fig. 1 (d)).
ll possible candidate crystal structures (42 377) are
nput into the classifier model for prediction. The
odel provides a probability estimate for each sam-
le, and we selected the material with a probability
reater than 0.9 as the candidate material. Next, we
tilize the first-principles electronic structure calcu-
ations (Fig. 1 (e)) to verify whether the candidates
re altermagnetic materials. Furthermore, once the
ew altermagnetic materials are verified and con-
rmed, we add the new one to the fine-tuning dataset
nd then re-perform the fine-tuning and prediction
teratively. Through four rounds of iteration and
everaging information from 148 known altermag-
etic materials, we identified 50 new altermagnetic
aterials. A discussion of the model convergence
nd the spin patterns’ distinguish ability is provided
n Note C within the online supplementary material.
dditional information for the pre-trained model is
iven in Note A within the online supplementary
aterial. 
To demonstrate the capability of our pre-trained

rystal material model, we fed all the candidate ma-
erials in batches into the pre-trained encoder that
rovides a corresponding latent space vector for each
aterial. We utilized principal component analysis
or dimensionality reduction and performed feature
isualization and t-SNE visualization on the latent
pace vectors (see Fig. S2). The results show that the
ata in the candidate set have a clear clustering phe-
omenon after pre-training, which indicates that the
re-training process can group materials containing
imilar information together. 

iscovered altermagnetic materials 
ased on the proposed AI search engine, we success-
ully discovered 50 new altermagnetic materials, in-
luding 16 metals and 34 insulators (see Table 1 ).
he computational results for most of the newly
iscovered altermagnetic materials (e.g. the first 23
aterials listed in Table 1 ) are shown in Note B
nd Figs S6–S17. Moreover, the d-wave, g-wave and
 -wave altermagnets can be found in the predicted 50
ltermagnetic materials shown in Table 1 . In particu-
ar, we predicted four i -wave altermagnetic materials
or the first time. 
The 16 metallic altermagnetic materials can be di-

ided into two classes according to whether the in-
egral of the Berry curvature of the occupied states
Page 6 of 18
over the Bri l louin zone is zero, which depends on
the symmetry of the altermagnetic materials. Since 
the easy magnetization axes of these materials are 
in the x - y plane, the eight metallic altermagnetic 
materials Nb 2 Fe B 2 , Ta 2 Fe B 2 , Nd B 2 C 2 , Mg 2 Fe Ir 5 B 2 , 
Mg 2 Mn Ir 5 B 2 , Mg 2 Ni Ir 5 B 2 , Sc 2 V Ir 5 B 2 , Sc 2 Mn Ir 5 B 2 
have non-zero Berry curvature for the integral of the 
occupied states over the Bri l louin zone according 
to magnetic point group symmetry, implying that 
odd-under-time-reversal responses (e.g. anomalous 
Hall and Kerr effects) can be realized in these ma- 
terials. In particular, the calculated intrinsic anoma- 
lous Hall conductance of altermagnet Nb 2 Fe B 2 is 
−100 �−1 cm 

−1 [84 ], which is the same order 
of magnitude as those of ferromagnetic metals. 
Since the three altermagnetic materials Nd B 2 C 2 , 
Sc 2 Mn Ir 5 B 2 , Mg 2 Ni Ir 5 B 2 , whose easy magnetiza- 
tion axes are in the z direction, have zero Berry cur-
vature for the integral of the occupied states over 
the Bri l louin zone, the anomalous Hal l effect is not
observed. 

Interestingly, the metallic altermagnet Nd B 2 C 2 
has odd-under-time-reversal Dirac fermions 
protected by the spin symmetries { E|| C4 z } and 
{ C⊥ 

2 || Mx ( 1 2 ,
1 
2 ) } (see Fig. 3 (b)), but Sc 2 Mn Ir 5 B 2 

and Mg 2 Ni Ir 5 B 2 have odd-under-time-reversal 
six-fold degenerate fermions (see panels (e) and 
(h) of Fig. 3 ) on the �-Z axis around the Fermi
level, which is protected by the spin point group 
symmetry. When considering spin-orbit coupling 
(SOC), the three metallic altermagnets Nd B 2 C 2 , 
Sc 2 Mn Ir 5 B 2 and Mg 2 Ni Ir 5 B 2 have D4 h point group 
symmetry that must be broken in ferromagnets, 
and the C4 v double point group symmetry protects 
the odd-under-time-reversal Dirac fermions of the 
metallic altermagnets Sc 2 Mn Ir 5 B 2 and Mg 2 Ni Ir 5 B 2 
on the �-Z axis (see panels (f) and (i) of Fig. 3 ).
Moreover, the pair of odd-under-time-reversal Dirac 
points in Mg 2 Ni Ir 5 B 2 are very close to the Fermi 
level, which is an advantage for investigating its 
novel physical properties in experiments. 

On the other hand, ferromagnetic semiconduc- 
tors that have spintronic and transistor function- 
alities could be applied to the next generation of 
electronic devices. However, the ferromagnets are 
usually metals with a high Curie temperature and 
hold no brief for insulators with a high Curie temper-
ature. Altermagnets with compensated antiparallel 
sublattices are not only in favor of insulators with a 
high Neel temperature, but also have spintronic func- 
tionality [3 ]. Thus, altermagnets open a new path- 
way to bypass the difficulties of ferromagnets. Here, 
we employed the LDA+U method [85 ] to predict 
34 altermagnetic semiconductors (see Table S2). 
Furthermore, altermagnetic Fe H O 2 may be a spin- 
triplet excitonic phase. From Fig. 4 (i), we observe 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf066#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf066#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf066#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf066#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf066#supplementary-data
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Table 1. Fifty newly discovered altermagnetic materials verified by electronic structure calculations. 

Materials 
Number Material Space group Anisotropy Conduction Project ID Reference 

1 Nb 2 Fe B 2 P4 / mbm (127) g-wave M mp-1086 6 60 [52 ] 
2 Ta 2 Fe B 2 P4 / mbm (127) g-wave M mp-1095076 [53 ]
3 Nd B 2 C 2 P4 / mbm (127) g-wave M mp-5765 [51 ] 
4 Mg 2 Fe Ir 5 B 2 P4 / mbm (127) g-wave M mp-1188243 [54 ] 
5 Mg 2 Mn Ir 5 B 2 P4 / mbm (127) g-wave M mp-1189623 [54 ] 
6 Mg 2 Ni Ir 5 B 2 P4 / mbm (127) g-wave M mp-1188248 [54 ] 
7 Sc 2 V Ir 5 B 2 P4 / mbm (127) g-wave M mp-20524 [55 ]
8 Sc 2 Mn Ir 5 B 2 P4 / mbm (127) g-wave M mp-1208987 [55 ]
9 Ca La Fe Ag O 6 Pc (7) d-wave M mp-1641528 NA
10 Ca La Cr 2 O 6 Pmn 21 (31) d-wave M mp-1642123 NA
11 Ni F 3 R3̄ c (167) i -wave M mp-561428 [56 ] 
12 Gd B 2 C 2 P4 /mbm (127) g-wave M mp-1080176 [57 ]
13 Ho B 2 C 2 P4 /mbm (127) g-wave M mp-20410 [58 ] 
14 Lu Cr O 3 Pnma (62) d-wave M mp-755471 [59 ] 
15 Ta Co B 2 Pnma (62) d-wave M mp-1189690 NA
16 Nd Ru O 3 Pnma (62) d-wave M mp-1200843 [60 ] 
17 Fe H O 2 Pmn 21 (31) d-wave I mp-510670 [61 ] 
18 Na Fe O 2 Pna 21 (33) d-wave I mp-21060 [62 ] 
19 Na Fe O 2 P41 21 2 (92) d-wave I mp-21880 [63 ] 
20 Mn O 2 Pnma (62) d-wave I mp-19326 [64 ] 
21 Mn O 2 I4 /m (87) d-wave I mp-19395 [65 ] 
22 Ca 3 Cr 2 O 7 Cmc 21 (36) d-wave I mp-1575873 NA
23 Zr Cr O 3 Pnma (62) d-wave I mp-755055 NA
24 Zr Mn O 3 R3 c (161) i -wave I mp-754513 NA
25 V F 3 R3̄ c (167) i -wave I mp-559931 [56 ] 
26 Cr F 3 R3̄ c (167) i -wave I mp-560338 [56 ] 
27 Mn O P63 mc (186) g-wave I mp-9 9 9539 [66 ] 
28 Ca Mn N 2 P63 /mmc (194) g-wave I mp-1246377 NA 
29 Ba 2 Fe Ge 2 O 7 P4 21 m (113) g-wave I mp-1190820 [67 ] 
30 Ba 2 Co Si 2 O 7 P4 21 m (113) g-wave I mp-510015 [68 ] 
31 Sr 2 Co Ge 2 O 7 P4 21 m (113) g-wave I mp-1191317 [69 ] 
32 V F 4 P21 /c (14) d-wave I mp-760030 NA 
33 Ca 2 Co Te O 6 P21 /c (14) d-wave I mp-552051 [70 ] 
34 Ni F 2 Pnnm (58) d-wave I mp-556324 [71 ] 
35 Li Fe 2 F 6 P42 nm (102) d-wave I mp-557403 [72 ] 
36 Fe H O 2 P21 21 21 (19) d-wave I mp-625251 NA
37 Ca Mn O 3 Pnma (62) d-wave I mp-19201 [73 ]
38 Ca V O 3 Pnma (62) d-wave I mp-22608 [74 ]
39 La Fe O 3 Pnma (62) d-wave I mp-22590 [75 ]
40 La V O 3 Pnma (62) d-wave I mp-19350 [76 ] 
41 Mn Se O 4 Pnma (62) d-wave I mp-817982 [77 ]
42 Na Pr 2 Os O 6 P21 /c (14) d-wave I mp-20 0 09 [78 ] 
43 Na Pr 2 Ru O 6 P21 /c (14) d-wave I mp-542512 [79 ] 
44 Nd Rh O 3 Pnma (62) d-wave I mp-4582 [80 ] 
45 Pr Ru O 3 Pnma (62) d-wave I mp-20186 [81 ] 
46 Sc V O 3 Pnma (62) d-wave I mp-756546 [82 ] 
47 Sm Rh O 3 Pnma (62) d-wave I mp-3317 [83 ] 
48 Ca La Cr Mo O 6 Pc (7) d-wave I mp-1640189 NA 
49 La 2 Mn Rh O 6 P21 /c (14) d-wave I mp-1223338 NA
50 Li Fe F 4 P21 /c (14) d-wave I mp-755632 NA

The table also lists the non-magnetic space group, even-parity wave anisotropy and metal(M) and insulator(I) conduction type. Altermagnetic Nd B 2 C 2 is 
confirmed by previous neutron scattering experiments [51 ] and our symmetry analysis. Here ‘NA’ indicates that this material has not been experimentally 
synthesized. The information of whether a material is a metal or an insulator is confirmed by DFT calculations. 
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Figure 3. The crystal and electronic structures of altermagnets. (a) The NdB 2 C 2 crystal primitive cell with magnetic structure. (b, c) The electronic 
band structure of altermagnetic NdB 2 C 2 . The electronic structure is calculated under the correlation interaction U = 5 eV . (d) The Sc 2 MnIr 5 B 2 crystal 
primitive cell with magnetic structure. (e, f) The electronic band structure of altermagnetic Sc 2 MnIr 5 B 2 without and with SOC, respectively. The electronic 
structure is calculated under the correlation interaction U = 4 eV . (g) The Mg 2 NiIr 5 B 2 crystal primitive cell with magnetic structure. (h, i) The electronic 
band structure of altermagnetic Mg 2 NiIr 5 B 2 without and with SOC, respectively. The electronic structure is calculated under the correlation interaction 
U = 6 . 56 eV . The red and blue lines represent spin-up and spin-down energy bands, respectively. 
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hat there is large spin splitting of 0.39 eV in the T- �-
 directions and the spins of the valence and conduc-
ion band are opposite, which may result in the spin-
riplet excitonic phase [86 ]. Moreover, the energy
f the altermagnetic state (AFM1) is much lower
han that of the other three magnetic states (see
ig. 4 (g)), indicating that Fe H O 2 may have a Neel
emperature above room temperature. Thus, alter-
agnetic Fe H O 2 is a very interesting material that,
e believe, wi l l attract both theoretical and exper-
mental interest. In addition, although Nd Ru O 3 is
n altermagnetic semimetal, it has a band gap along
he high-symmetry directions with spin splitting,
nd its valence and conduction bands have opposite
pins (see panels e and f of Fig. S5). Thus, Nd Ru O 3 
ay be a Bardeen–Cooper–Schrieffer-type triplet
xciton insulator [87 ]. In the following, we present
Page 8 of 18
in detail two altermagnetic materials that are a metal 
and semiconductor, respectively. 

Altermagnetic Nb 2 Fe B 2 has space group 
P 4 / mbm (127) symmetry, and the corresponding 
elementar y symmetr y operations are C4 z , C2 x ( 1 2 ,

1 
2 ) 

and I, which yield the point group D4 h . The crystal 
structure of Nb 2 Fe B 2 is composed of an Fe-B atom 

layer and Nb atom layer, as shown in Fig. 5 (a).
Moreover, the two Fe atoms in the primitive cell 
are surrounded by two B atomic quadrilaterals with 
different orientations (Fig. 5 (b)). Very recently, 
Nb 2 Fe B 2 has been predicted to be a Neel antiferro- 
magnet, which is shown in Fig. 5 (a). Because of the
anisotropic Fe-B quadrilateral, the spin-charge den- 
sity of Fe atoms is anisotropic (see Fig. 5 (d)). Thus,
compensated antiparallel spins are not connected 
by the spin symmetry { C⊥ 

2 || I} or { C⊥ 

2 || τ } , but are

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf066#supplementary-data


Natl Sci Rev, 2025, Vol. 12, nwaf066

Fe

O

H

AFM2

FM AFM3

AFM1

Γ
X

Y

T
R

S

Z
U

FM
AFM1
AFM2
AFM3

1

2

0

0

42

E
ne

rg
y

(e
V

/F
e)

U (eV)

-3

0

3

E
ne

rg
y

(e
V

)

Γ ΓX S Y Z RT A Z

-3

0

3

E
ne

rg
y

(e
V

)

ΓT m(T)

(h)

(g)

(b)

(d)

(c)

(e)

(a)

(f) (i)

Figure 4. The crystal and electronic structures of altermagnet FeHO 2 (31). (a) The crystal primitive cell of altermagnetic FeHO 2 (31). (b–e) Four significant 
magnetic structures of FeHO 2 (31). The arrows represent the magnetic moments of Fe. (f) The Brillouin zone (BZ) with high-symmetry points and lines of 
altermagnetic FeHO 2 (31). (g) The relative energy of four significant magnetic states with the variation of correlation interaction U. (h, i) The electronic 
band structure of FeHO 2 (31) without SOC. The red and blue lines represent the spin-up and spin-down energy bands, respectively. The electronic 
structure is calculated under the correlation interaction U = 4 eV . 

c  

t  

s  

d  

π  

a  

B  

a  

s  

t
a  

r  

a  

a  

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/12/4/nw

af066/8030545 by guest on 23 June 2025
onnected by the spin symmetry { C⊥ 

2 || C2 x ( 1 2 ,
1 
2 ) } ;

hat is, Nb 2 Fe B 2 is an altermagnetic material. The
pin symmetry { C⊥ 

2 || Mx ( 1 2 ,
1 
2 ) } protects the spin

egeneracy in electronic bands on the kx = 0 and
planes; considering the spin symmetries { E|| C4 z } ,
ltermagnetic Nb 2 Fe B 2 has six node surfaces in the
ri l louin zone (see Fig. 5 (c)). Thus, Nb 2 Fe B 2 is
 g-wave altermagnet described by the non-trivial
pin Laue group P1 4 /1 m2 m2 m . Figure 5 (e) shows
hat the electronic bands of altermagnetic Nb 2 Fe B 2 
re spin degenerate along the high-symmetry di-
ections, which is consistent with our symmetry
nalysis. As can be seen from Fig. 5 (f), all the bands
re spin splitting and spin antisymmetric in the
Page 9 of 18
non-high-symmetry D- �-m(D) direction, which 
reflects the characteristics of g-wave spin polariza- 
tion. On the other hand, the valence bands and the
conduction bands have multiple crossing points 
in the high-symmetry and non-high-symmetry 
directions, such as the �-X and �-D directions, in- 
dicating that altermagnet Nb 2 Fe B 2 is a topologically 
non-trivial metal. When considering SOC, the easy 
magnetization axis of altermagnet Nb 2 Fe B 2 is along 
the x direction. Accordingly, altermagnet Nb 2 Fe B 2 
has C2 z T , C2 x ( 1 2 ,

1 
2 ) T , C2 y ( 1 2 ,

1 
2 ) T , I, Mz T , Mx ( 1 2 ,

1 
2 ) T , My point symmetries, which make the anoma- 
lous Hall conductivities both σxy and σyz zero, but 
σxz non-zero, which has been predicted by our 
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revious theoretical study [84 ]. Likewise, the
nomalous Kerr effects can also be realized in
ltermagnet Nb 2 Fe B 2 . 
The other altermagnetic material that we would

ike to mention is Na Fe O 2 . The crystal struc-
ure of Na Fe O 2 is shown in panels (a)–(d) of
ig. 6 with space group P/ 41 21 2 (92) symmetry.
he corresponding elementar y symmetr y opera-
ions are C4 z ( 1 2 ,

1 
2 ,

1 
4 ) and C2 x ( 1 2 ,

1 
2 ,

3 
4 ) , which

ield the point group D4 . Since the d orbitals
f Fe are half occupied and the angle between
e-O-Fe is 136 ◦ in Na Fe O 2 , the superexchange in-
eractions result in the nearest-neighbor Fe ions
aving opposite magnetic moments and the next-
eighbor Fe ions having the same magnetic mo-
ents. Hence, the magnetic ground state of Na Fe O 2 
i l l be AFM1 (see Fig. 6 (b)). To verify our the-
retical analysis, we consider four different mag-
etic structures, which are shown in panels (a)–
d) of Fig. 6 . It can be seen that the magnetic
tructure AFM1 is always in the ground state of
a Fe O 2 under different correlation interactions
 (see Fig. 6 (e)). Moreover, the energy of the AFM1
tate is much lower than that of the other three mag-
etic states (Fig. 6 (e)), implying that Na Fe O 2 may
Page 10 of 18
have a Neel temperature above room temperature. 
We show in Fig. 6 (b) that the magnetic and crystal
primitive cells of Na Fe O 2 are the same, which break 
{ C⊥ 

2 || τ } spin symmetry. Thus, Na Fe O 2 is an alter- 
magnetic material due to the lack of space-inversion 
symmetry. 

We also calculated the electronic band structure 
along the high-symmetry directions. Figure 6 (f) 
shows that altermagnet Na Fe O 2 is a semiconductor 
with a band gap of 2.75 eV. The spin-degenerate 
bands in the �- X, M 

∗- A and Z - R directions (the 
X- M direction) are protected by the spin symme- 
try { C⊥ 

2 || C2 y ( 1 2 ,
1 
2 ,

1 
4 ) } ( { C⊥ 

2 || C2 y ( 1 2 ,
1 
2 ,

3 
4 ) } );

see Fig. 6 (f). In fact, the spin symmetry 
{ T || C2 y T ( 1 2 ,

1 
2 ,

1 
4 ) } ( { T || C2 x T ( 1 2 ,

1 
2 ,

3 
4 ) } ) can

protect spin degeneracy of bands on the ky = 0 
and π (the kx = 0 and π) planes. That is, alter- 
magnet Na Fe O 2 has four nodal surfaces in the 
Bri l louin zone. Thus, Na Fe O 2 is a d-wave altermag- 
net that is reflected by the spin-splitting bands in the 
M - �- M∗ directions. Considering the d-wave alter- 
magnets allowing unique spin current by electrical 
means [5 ], altermagnet Na Fe O 2 may have both 
spintronic and transistor functionalities at room 

temperature. 
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ISCUSSION 

I approaches have shown ground-breaking capa-
ilities in the discovery of materials in a large
earch space. An intractable challenge faced by AI
ies in the shortage of sufficient labels or posi-
ive samples, e.g. in the case of the discovery of
ltermagnetic materials. We herein introduced an
I search engine that combines pre-trained crys-
al models (GNN pre-training and optimal trans-
ort theory) and physics-based methods (symme-
ry analysis and first-principles electronic structure
alculations) to discover new altermagnetic materi-
ls with specific properties under minimal labeled
ample conditions. Among the 91 649 possible can-
idates, we identified 50 new altermagnetic materi-
ls covering metals, semiconductors and insulators.
eanwhile, the proposed AI search engine also has

he few-shot learning ability. For example, it is ca-
able of predicting 25 altermagnetic materials only
ased on 14 positive samples (see Note C within the
nline supplementary material). We o bs erved v ar-
ous novel physical properties in these newly dis-
overed altermagnetic materials, e.g. the anomalous
all effect, anomalous Kerr effect and topological
Page 11 of 18
property. It is noted that four out of these 50 al-
termagnetic materials are i -wave types, discovered 
for the first time, fil ling a gap in the literature. We
demonstrate that the AI search engine is capable 
of uncovering a set of altermagnetic materials with 
unique properties, highlighting its potential for ac- 
celerated discovery of the materials with targeting 
properties. 

There sti l l remain some potential limitations as- 
sociated with the AI search engine. Firstly, we have 
to admit that the issue of imbalance between pos- 
itive and negative samples during the fine-tuning 
stage exists, primarily due to the scarcity of known 
positive samples. We have also discussed the po- 
tential intrinsic error and computational cost as- 
sociated with this AI search engine (see Note C 

within the online supplementary material). Uti - 
lizing the translational and rotational symmetries 
of crystals to augment positive sample data may 
help address this challenge, which wi l l be demon-
strated in our future work. Secondly, if the materi- 
als exhibit distinct magnetic phases at varying tem- 
peratures, such as Mn 5 Si 3 , whose low-temperature 
spin pattern is reported to be non-collinear and 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf066#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf066#supplementary-data
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igh-temperature spin pattern to be antiferromag-
etic [88 ], our current model is unable to predict
heir magnetic properties. In such a case, if the ma-
erial with temperature-driven magnetic transition is
sed as the positive sample to train the AI model,
he prediction might involve possible bias. We im-
rove our classifier model by considering tempera-
ure as a conditional input parameter to enhance its
apability in screening and predicting materials with
emperature-driven properties in the future. Thirdly,
n the calculations of magnetic ground states, we fo-
us only on collinear magnetic structures and do not
onsider non-collinear ones. This is because most
f the materials we calculate do not exhibit geomet-
ic frustration. Even for a few materials like CoF 3 ,
hich exhibit triangular geometric frustration, previ-
us studies did not consider non-collinear magnetic
tructures [56 ]. Another limitation is that we have
ot yet found ideal altermagnetic topological insula-
ors and altermagnetic topological semimetals (such
s odd-under-time-reversal Dirac semimetals, and
ix-fold semimetals). Employing the decoder based
n the pre-trained model to generate potential al-
ermagnetic materials holds promise in overcoming
his challenge. Furthermore, adopting a multimodal
re-training approach offers the potential to further
nhance the accuracy of model predictions. The
urrent pre-training only considers the single modal-
ty of the crystal structure information. Leveraging
nformation from other modalities (such as textual
escriptions of crystal structures) may enhance the
erformance of the pre-trained model. These meth-
ds wi l l be further explored in our future research
ndeavors. 
In addition, an alternative to alter the proposed

I model is to replace the classifier with a regres-
or to predict the magnetic structure of a given ma-
erial candidate, where such a regressor can be fine-
uned based on 2138 known magnetic structures in
he MAGNDATA database [28 ]. Afterward, sym-
etry analysis can be employed to identify the alter-
agnetism. However, since there are infinite types
f magnetic structures, accurately predicting the ex-
ct type of magnetic structure for a given material re-
ains challenging. Therefore, an end-to-end classi-
er in our proposed model, to directly judge whether
 crystal material is altermagnetic, is preferred, es-
ecially under the condition of very limited positive
amples. 
It is well known in the community that the al-

ermagnetism of 98% of candidates in the Materi-
ls Project ( > 90 000 materials), whose magnetic
tructure information is unknown, has not yet been
onfirmed and remains a substantial ly chal lenging
ask. The brute-force approach leveraging our expert
Page 12 of 18
knowledge relies on trial and error by chance, hav- 
ing an extremely low probability of correctly discov- 
ering and confirming altermagnetic materials from 

the large database. However, our AI model narrows 
down the search space, predicts a list of highly possi- 
ble candidate altermagnets and lifts the discovery ac- 
curacy to a notable margin of about 31% (50/161), 
which greatly accelerates our discovery of new al- 
termagnetic materials. (If we calculate the magnetic 
ground state of all materials, and then determine 
whether these materials are altermagnetic by spin 
symmetry, we can probably predict more altermag- 
netic materials. However, this cost is extremely huge. 
Given the scale and complexity of this task, it is un-
likely that DFT can be used to complete the above 
brute-force computation for all candidate materials.) 
The success of this engine lies not only in its pre-
dictive capabilities, but also in its ability to lever- 
age extensive crystal structure data and deep learning 
techniques, allowing for pre-training without explicit 
reference to underlying physical laws, to reveal com- 
plex correlations and patterns in new materials. Al- 
though 161 altermagnetic materials have been con- 
firmed by the symmetry analysis approach [23 ], the 
urgency of discovering a variety of new altermag- 
netic materials with different properties sti l l remains. 
Based on these existing altermagnetic materials con- 
firmed by the spin space group, our AI search engine 
could predict many more altermagnetic materials, 
among which we expect to find a variety of altermag- 
nets beyond the MAGNDATA database. For exam- 
ple, over 300 additional candidate materials (uncon- 
firmed yet by DFT calculations) were predicted by 
the AI search engine and listed in our GitHub reposi- 
tory ( https://github.com/zfgao66/MatAltMag) for 
open research. Nevertheless, obtaining the magnetic 
ground state without experimental validation re- 
mains a challenging problem. The magnetic state of 
a material may be collinear or non-collinear, and the 
magnetic cell may be a supercell of the crystal primi- 
tive cell, which, in principle, lead to an infinite num- 
ber of possibilities for the magnetic structure. Hence, 
experimental efforts wi l l help further validate our 
discovery. 

The proposed engine might also be applicable 
to other types of materials whose properties are 
strongly correlated to their crystal structures, such 
as Bardeen–Cooper–Schrieffer superconductive 
materials [89 ], the ferromagnetic semiconduc- 
tor [90 ] and high-temperature superconductive 
materials [91 ], among others. We wi l l demonstrate 
the potential of our proposed model for discovering 
other materials in a future study. We envision this 
effort may present new opportunities in the field of 
material discovery across different disciplines. 

https://github.com/zfgao66/MatAltMag


Natl Sci Rev, 2025, Vol. 12, nwaf066

M
W  

m

M
A
T  

i  

d  

o  

N  

t  

e  

e  

b  

g  

i  

s  

n  

c  

i  

t  

f  

t  

s
 

f  

b  

l  

p  

a  

c  

d  

o  

o  

c  

o  

w  

b  

t  

d  

i  

W  

t  

b  

m  

i  

q  

fi  

p  

p  

m  

o  

s  

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/12/4/nw

af066/8030545 by guest on 23 June 2025
ETHODS 

e herein introduce the model details and imple-
entation specifics. 

odel details 
rchitecture overview 

he concept of pre-training a large deep learn-
ng model and subsequently applying it to perform
ownstream tasks originally originated in the field
f natural language processing (NLP). Large-scale
LP models, such as GPT [92 ], and their deriva-
ives, employ transformers as text encoders. These
ncoders transform input texts into embeddings and
stablish pre-training objectives based on these em-
eddings, including generative loss and masked lan-
uage modeling loss. The pre-training process is typ-
cally unsupervised, based on large-scale unlabeled
amples. In contrast to traditional end-to-end neural
etwork models, pre-trained models can achieve ex-
ellent performance even with limited labeled pos-
tive samples. We thus consider utilizing the pre-
raining technique to fully leverage the information
rom existing crystal material databases and treat
he discovery of altermagnetic materials as a down-
tream task. 
The objective of our proposed pre-training model

or crystal materials is to learn the information em-
edded within crystal structures. To enhance the
earning capacity of the pre-training model, we pro-
osed a graph auto-encoder architecture (see Figs 1
nd 2 ). The encoder consists of n layers of graph
onvolution to learn crystal embeddings, while the
ecoder employs the Wasserstein distance based on
ptimal transport theory [40 ] for reconstruction
f the input crystal structures. Specifically, the en-
oder aims to encode the graphical representation
f crystal materials into a high-dimensional matrix,
hile the goal of the decoder is to decode this one
ack into the graphical representation of crystal ma-
erials. Through extensive training with unlabeled
ata, the model effectively converges (as depicted
n the pre-training loss history shown in Fig. S3).
e believe that the pre-trained encoder can effec-

ively project the crystal structures into crystal em-
eddings. Leveraging the encoder of the pre-trained
odel, we built the classifier model by incorporat-

ng a pooling layer and a softmax function. Subse-
uently, we trained the classifier model using the
ne-tuning dataset. This trained model is then em-
loyed to screen the candidate materials, offering the
robability of whether the target material is alter-
agnetic. The hyperparameters of the model were
btained by grid search, as listed in Table S1. In
ummary, our model comprises four main compo-
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nents: crystal data pre-processing, an encoder con- 
structed using graph convolutional neural networks, 
a decoder built based on optimal transport theory 
and the construction of a classifier model. We elab- 
orate on each of these components one by one as
follows. 

Crystal data pre-processing 
The data pre-processing procedure aims to bridge 
the crystal structure and the crystal graph repre- 
sentation [37 ]. The input of the model is a crys-
tal structure file (.cif) that contains three primitive 
translation vectors of the primitive unit cell and 
the positional information of each atom. It satis- 
fies the organization invariance for atomic indexing 
and the size invariance for unit cell selection. We 
define the graph representation G(V , U, X ) to de-
scribe the crystal structure information, where V 

denotes the set of nodes, U the set of edges and
X the set of features. First, we represent atoms as
nodes vi in a crystal graph representation, where 
i = 1 , . . . , | V | . Since periodic boundary conditions
are taken into consideration, equivalent nodes are 
merged to obtain irreducible nodes. Then, for each 
node vi , we consider the neighborhood nodes v j , 
where j = , 1 , . . . , |Ni | and Ni is the set of neigh-
borhood nodes for vi . The k connections between 
nodes vi and v j are denoted as the edge u(i, j)k in 
the graph. Next, the initial node features { h(0) i }| V | i =1 
are given through one-hot encoding based on the 
sequence of atoms in the crystal structure. We use 
H(0) 
Ni 

to denote the neighbor node features of node vi . 
Here, vi denotes the i th node. Each edge u(i, j)k ∈ U 

is represented by a feature vector u(i, j)k that corre- 
sponds to the kth bond linking node vi and node v j .
A feature vector hi ∈ X encoding the attribute of the
atom corresponding to node vi ∈ V is used to rep-
resent each node vi . An example for determining the 
atom connectivity is i l lustrated in Fig. S4. 

Crystal graph convolutional encoder 
The encoder is used to represent the input crys- 
tal structure information as a high-dimensional ma- 
trix (Fig. 2 (c)), which contains n convolutional 
layers. The tth convolutional layer updates the 
node feature vector h(t ) i via the convolution func- 
tion h(t+1) 

i = Conv (h(t ) i , h(t ) j , u(i, j)k ) . We denote 
the graph convolution function by g, which itera- 
tively updates the overall feature vector hi , whose 
output is the input for the next step. The node index
in feature vector hi and length of hi are invariant for 
every step. We construct the first concatenate neigh- 
bor vector as z(t ) (i, j)k 

= h(t ) i ⊕ h(t ) j ⊕ u(i, j)k in step 
t , and then perform the convolution operation to 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf066#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf066#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf066#supplementary-data
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pdate the feature as 

h(t+1) 
i = h(t ) i +

∑ 

v j ∈Ni , vm ∈Mi ,k 

σ (A ) � g(B ) , 

(1)
here A denotes z(t ) (i, j)k 

W (t ) 
f + b(t ) f and B denotes

(t ) 
(i, j)k 

W (t ) 
s + h(t ) i,m W (t ) 

m + b(t ) s . Here ‘ �’ denotes the
lementwise multiplication, the Mi are the mag-
etic atoms corresponding to node vi and σ is
he sigmoid activation function. Since the magnetic
toms are important for the material to exhibit al-
ermagnetic properties, we added the weight term
(t ) 
m for the magnetic atoms. The weight functions
(t ) 
c , W (t ) 

s , W (t ) 
m are the convolution weight matrix,

elf-weight matrix and magnetic atom weight matrix
f the tth layer, respectively. In equation ( 1 ), we in-
orporate the residual term h(t ) i to enhance the train-
ng of the neural network. 

eighborhood Wasserstein reconstruction 
ecoder 
he decoder (denoted by ψ) is utilized to restore the
nput graph representation of a crystal from the crys-
al embeddings, which mainly consists of two parts
see Fig. 2 (a)), one for node feature reconstruction
denoted by ψs ) and the other for adjacent node fea-
ure reconstruction (denoted by ψp ), namely, ψ =
ψp + ψs ) . Here, ψs = MLP s (h

(t ) 
i ) is used to re-

onstruct the node features, where MLP indicates
 multilayer perception. The architecture of the de-
oder block, as shown in Fig. 2 (b), follows the design
n [50 ]. 
In particular, we adopt the n -hop neighboring
asserstein decoder for graph feature reconstruc-

ion. We can obtain { h(0) i , H(0) 
Ni 

} from the pre-
rocessing procedure. For each node vi ∈ V , we up-
ate the node representation h(t+1) 

i via the GNN
ayer in the encoder, which gathers information from
(t ) 
i and its neighbor representations H(t ) 

Ni 
, namely,

(t+1) 
i = φ(t ) (h(t ) i , H(t ) 

Ni 
) . Note that the neighbor-

ood set of node features H(t ) 
Ni 

can be directly assem-
led based on the node adjacency. Consequently, we
olve the following optimization problem to train the
etwork: 

arg min φ,ψ 

∑ 

vi ∈ V 
L

(
h(t ) i , H(t ) 

Ni 
, ψ

(
h(t+1) 
i , H(t+1) 

Ni 

))
.

(2)

ere L (·, ·) denotes the reconstruction loss over
 ≤ t < n . The loss function L can be decomposed
nto two distinct elements, each gauging the recon-
truction of self and neighborhood node features,
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respectively, written as 

L = λs Ls 

(
h(0) i , ψs 

(
h(n ) i 

))

+ λp 

n −1 ∑ 

t=0 

Lp 

(
H(t ) 
Qi 

, ˆ H(t ) 
Qi 

)
, 

(3) 

where ˆ H(t ) 
Qi 

= ψ (t+1) 
p (h(t+1) 

i , H(t+1) 
Ni 

) denotes the 
reconstructed neighborhood set of node features 
based on the sampling network shown in Fig. 2 (b). 
Here Qi ⊂ Ni denotes the set of q samples of neigh- 
borhood nodes for vi ; λs and λp are the weighting co- 
efficients and Ls stands for the reconstruction error 
of the node features, given by 

Ls 

(
h(0) i , ψs 

(
h(n ) i 

))
=

∥∥∥h(0) i − ψs 

(
h(n ) i 

)∥∥∥
2 

2 
. 

(4) 
In equation ( 3 ), Lp is the loss function used to mea-
sure the reconstruction of the neighborhood set of 
node features H(t ) 

Qi 
. Inspired by Tang et al. [50 ], we

evaluate this loss function by a Monte Carlo method. 
Specifically, for node vi , the distribution of its neigh- 
borhood information can be empirically represented 
by P (t ) 

i , defined as 

P (t ) 
i =

∑ 

v j ∈Ni 

δ
(t ) 
h j 

, (5) 

where δ(t ) h j 
denotes the Dirac delta function. Here, 

we adopt the 2-Wasserstein distance, which mea- 
sures the similarity between two distributions, to 
construct the loss [50 ], expressed as 

Lp 

(
H(t ) 
Ni 

, ˆ H(t ) 
Qi 

)
= W2 

2 

(
P (t ) 
i , ˆ H(t ) 

Qi 

)
. (6) 

In our experiments, we fix q = 10 based on a Hun-
garian matching, which avoids heavy computational 
overhead while retaining accuracy, when evaluating 
equation ( 6 ) during training. 

Classifier model 
The classifier model is constructed by adding a pool- 
ing layer and a softmax module after the encoder of 
the pre-trained model (see Fig. 2 (c)). The pooling 
layer is applied to the embedding of the pre-trained 
encoder to generate an overall feature vector hg that 
can be represented by a pooling function given by 
hg = Pool (h(0) 0 , h(0) 1 , . . . , h(0) N , . . . , h(n ) N ) , where n 
is the number of convolution layers and N is the 
number of nodes in the graph. The softmax mod- 
ule in the classifier model ensures that the output 
for each candidate material through the model is a 
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robability in the range [0 , 1] , representing the like-
ihood of the candidate material being an altermag-
etic material. 

mplementation details 
he pre-training model 
o extract the crystal embeddings of the candidate
aterials, we employ a graph convolution neural
etwork as an encoder, which consists of three graph
onvolution layers. (We use the code of CGCNN
o construct the encoder module [37 ] to construct
he encoder module, whose GitHub link is https://
ithub.com/txie-93/cgcnn and commit ID is
f42ab233c4ee0c416879d6bc2d22a264418413ad’.) 
or classification, we utilize a pooling layer
nd a multilayer perceptron as the projection
ead, comprising two fully connected layers
ith a rectified linear unit activation layer and a
ropout layer. (We use the code of NWR-GAE
o construct the auto-decoder module [50 ] to
onstruct the auto-decoder module and com-
ute loss, whose GitHub link is https://github.
om/mtang724/NWR-GAE a nd commit ID is
e9aee57a00 9f6c2150cf68fc173c2af30 94a7205’.) In
erms of optimization, we use the Adam optimizer
ith a learning rate of 0.001. Additionally, we imple-
ent MultiStepLR with milestones set at 100. To
nsure stability during training, we train our classi-
er model with a dropout rate of 0.25. This is done
sing a batch size of 512 and training over 500 epochs
n two NVIDIA A100 GPUs. We then label these
aterials whose probabilities exceed 0.9 as potential
ltermagnetic candidates in all experiments. To train
nd evaluate our model efficiently, we leverage the
istributed deep learning framework Accelerate.
ore details of the model training are discussed in
ote A within the online supplementary material.
iven this specific network architecture, we can
omplete the training and evaluation process of
he classifier model in less than 1.5 hours on our
atasets. This significantly improves the overall
fficiency of our proposed workflow. 

irst-principles electronic calculation 
he first-principles electronic structure calcula-
ions were performed in the framework of DFT
sing the Vienna ab initio simulation package
VASP) [93 ]. The generalized gradient approxi-
ation (GGA) of Perdew–Burke–Ernzerhof type
as adopted for the exchange-correlation func-
ional [94 ]. The projector-augmented-wave method
as employed to describe the interactions between
alence electrons and nuclei [95 ]. To account for
he correlation effects of 3d and 4f orbitals, we
erformed GGA+U calculations by using the sim-
Page 15 of 18
plified rotationally invariant version introduced by 
Dudarev et al. [85 ]. Detailed information regarding 
the DFT calculations is given in Note D within the
online supplementary material. 

DATA AVAILABILITY 

The crystal data are available from the Materials Project database
via the web interface at https://materialsproject.org or the API at 
https://api.materialsproject.org. 

All source codes to reproduce the results in this study are avail-
able from GitHub ( https://github.com/zfgao66/MatAltMag). 
We rely on PyTorch ( https://pytorch.org) for deep model train-
ing. We use specialized tools for VASP ( https://www.vasp.at/).
The code of the pre-training model for crystal materials and the
pre-trained neural network weights are available from GitHub 
( https://github.com/zfgao66/MatAltMag). 

SUPPLEMENTARY DATA 

Supplementary data are available at NSR online. 
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