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ABSTRACT

121 Shuai Qu?-, Bocheng Zeng'-f, Yang Liu3, Ji-Rong Wen',
1* Peng-Jie Guo?* and Zhong-Yi LuZ*

Altermagnetism, a new magnetic phase, has been theoretically proposed and experimentally verified to be
distinct from ferromagnetism and antiferromagnetism. Although altermagnets have been found to possess

many exotic physical properties, the limited availability of known altermagnetic materials hinders the study

of such properties. Hence, discovering more types of altermagnetic materials with different properties is

crucial for a comprehensive understanding of altermagnetism and thus facilitating new applications in the

next generation of information technologies, e.g. storage devices and high-sensitivity sensors. Since each
altermagnetic material has a unique crystal structure, we propose an automated discovery approach
empowered by an artificial intelligence (AI) search engine that employs a pre-trained graph neural network

to learn the intrinsic features of the material crystal structure, followed by fine-tuning a classifier with limited

positive samples to predict the altermagnetism probability of a given material candidate. Finally, we

successfully discovered 50 new altermagnetic materials that cover metals, semiconductors and insulators,
confirmed by first-principles electronic structure calculations. The wide range of electronic structural
characteristics reveals that various novel physical properties manifest in these newly discovered

altermagnetic materials, e.g. the anomalous Hall effect, anomalous Kerr effect and topological property. It is

worth noting that we discovered four i-wave altermagnetic materials for the first time. Overall, the Al search

engine performs much better than human experts and suggests a set of new altermagnetic materials with

unique properties, outlining its potential for accelerated discovery of the materials with targeted

properties.
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INTRODUCTION

Magnetic materials form a cornerstone of our mod-
ern information society. Generally, magnetism is
categorized into ferromagnetism and antiferromag-
netism. Recently, based on the spin group formal-
ism [1], anew magnetic phase called altermagnetism
has been theoretically proposed [2,3], which ex-
hibits numerous novel physical properties [2-18],
paving the path way for new avenues in the next
generation of information technology. Both alter-
magnets and conventional antiferromagnets have
compensated antiparallel spin sublattices, resulting
in vanishing net magnetic momentum. The com-
pensated antiparallel spin sublattices are connected
by the spin symmetry {Cj‘||l} or {Cj‘||‘c } trans-
formation for conventional antiferromagnets, but
by the spin symmetry {C; ||R;} transformation for
altermagnets [2]. Here, the symmetry operations

at the left and right of the double vertical bar act
only on the spin space and lattice space, respec-
tively; the notation C- represents the 180° rota-
tion perpendicular to the spin direction; the no-
tation I, T, R; and T denote space inversion, time
reversal, rotation/mirror and fractional translation
operations, respectively. Because of the absence of
spin symmetry {C2LT||IT} or {Czill‘c}, altermag-
nets have spin splitting in electronic bands. Un-
like isotropic k-independent s-wave spin splitting in
ferromagnets, altermagnets can form anisotropic k-
dependent d-wave, g-wave and i-wave spin splitting
according to different spin group symmetries [2].
Moreover, altermagnets not only have spin-splitting
bands deriving from magnetic exchange interaction,
which is the same as ferromagnets, but they also
have unique extraordinary spin-splitting bands de-
riving from anisotropic electric crystal potential and
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magnetic exchange interaction [2]. In some alter-
magnets, the spin splitting can even have electron-
volt magnitudes in parts of the Brillouin zone [2-
4]. The anisotropic k-dependent spin splitting can
result in a unique spin current by electrical means
in d-wave altermagnets [S]. Based on the unique
spin current, the spin-splitter torque in d-wave alter-
magnets was proposed in theory [S] and confirmed
by experiments [6,7], which may circumvent lim-
itations of spin-transfer torque (ferromagnets) and
spin-orbit torque (conventional antiferromagnets or
non-magnetic materials with strong spin-orbit cou-
pling) in magnetic memory devices [S]. Meanwhile,
the giant tunneling magnetoresistance [4] and gi-
ant piezomagnetism [19] can also be proposed in
altermagnets based on the anisotropic k-dependent
spin splitting. In the relativistic case, the time-
reversal symmetry-breaking macroscopic phenom-
ena, including quantum anomalous Hall [8], anoma-
lous Hall [9,10] and anomalous Kerr effects [11],
have been predicted by theories in altermagnets;
moreover, the anomalous Hall effect has been sup-
ported by experiments [12,13].

On the other hand, magnetic topological phases
and their exotic physical properties have recently at-
tracted intensive experimental and theoretical atten-
tion. Very recently, some topological semimetal and
insulator phases protected by spin group symmetry
have been proposed in theory [20-26]. Consider-
ing the facts that altermagnets are described by spin
group symmetry and that the symmetry landscape
of spin space groups is more plentiful than that of
the conventional magnetic space groups, more new
magnetic topological phases and their exotic phys-
ical properties may thus be proposed theoretically
in altermagnets. Nevertheless, altermagnets are hith-
erto in the early stage of research. Since there are
many exotic physical properties that have been dis-
covered and new physical phenomena to be dis-
covered, altermagnets are bound to attract inten-
sive theoretical and experimental attention in the
near future. Very recently, based on spin group the-
ory and known magnetic structures, 141 altermag-
netic materials have been discovered [23]. However,
known altermagnetic materials are still limited so far.
Hence, there is an urgent need to discover more al-
termagnetic materials for a comprehensive under-
standing of altermagnetism, thus facilitating new
applications in the next generation of information
technology.

Conventional discovery methods primarily rely
on the known magnetic structures and the corre-
sponding spin space group. Such approaches are
applicable only when the magnetic structure infor-
mation is known a priori, which has a clear lim-
itation if such information is missing. However,
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there exist over 90 000 magnetic materials docu-
mented in the Materials Project [27], among which
only 2138 magnetic structures are known (see the
MAGNDATA database [28]). The reason why the
magnetic structures of only about 2% of magnetic
materials have been determined is that it is indeed a
non-trivial task that relies on extremely costly neu-
tron scattering experimentation. Therefore, it is cru-
cial to develop a method that breaks the bottleneck
limitation of missing magnetic structure informa-
tion, enabling the discovery of new altermagnetic
materials without any prior knowledge of such in-
formation. On the other hand, the altermagnetic
property is closely related to the material crystal
structure, which provides a basis for the applica-
tion of artificial intelligence (AI) methods to the
discovery of altermagnetic materials. Moreover, the
emerging Al technology has found many key appli-
cations in the discovery of materials [29]. For in-
stance, Al was used for predicting organic compound
synthesis in organic chemistry [30], planning chem-
ical synthesis pathways [31], iterative synthesis of
small molecules [32], accelerating the discovery of
self-assembling peptides [33], designing eutectic sol-
vents [34] and analyzing de novo protein mechan-
ics and structures [35,36]. Recently, deep learning
methods have been applied to the prediction of crys-
tal materials with targeted properties [37,38]. These
methods generally utilize a large amount of crystal
structure data to train graph neural network (GNN)
models in an end-to-end manner, without explicit
reference to the physical laws underlying these ma-
terial properties. The trained model could predict
key physical properties of crystal materials, such
as the formation energy and band gap, based on
a rich training dataset containing over 10* labeled
samples [37]. However, such methods are not suit-
able for discovering altermagnetic materials, because
of the fact that the known positive samples are
limited.

In this article, we introduce an Al search en-
gine, as shown in Fig. 1, that combines deep model
pre-training and fine-tuning techniques and physics-
based approaches (e.g. symmetry analysis and
first-principles electronic structure calculations)
to discover new altermagnetic materials under the
condition of limited labeled samples. In particular,
we pre-train a self-supervised GNN [39] based on
optimal transport theory [40] to learn the intrinsic
features of the crystal structure of materials, and
refine a downstream classifier with limited positive
samples to predict the altermagnetism probabil-
ity of a given material candidate. First, based on
symmetry analysis, we constructed the pre-training
dataset (containing 68 116 materials), fine-tuning
the dataset (containing 25739 materials, namely,
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Figure 1. Workflow of the pre-trained model for searching altermagnetic materials. (a) Construction of candidate material datasets using high-
throughput screening and symmetry analysis (see Fig. S1 for details). (b) The pre-training autoencoder framework for crystal materials. The input
of the model is the crystal structure. Each crystal structure can be represented as a multiedge GNN. The encoder is built by the graph convolutional neu-
ral network. The decoder is built on the Waterstein neighborhood reconstruction. (c) The fine-tuning procedure with loading pre-training stage weight
matrix. (d) The prediction procedure by inputting candidate materials. (e) Validation of the altermagnetic property via first-principles electronic structure
calculations.

25 591 negative samples plus 148 positive samples)  predictability of the model. The efficacy of this Al
and candidate dataset (containing 42 377 materials)  search engine has been well demonstrated.

from the Materials Project [41]. Next, we pre- Of the 91 649 total candidates, we discovered
trained a GNN model (composed of an encoderand 50 new altermagnetic materials covering metals,
a decoder) for crystal materials, based on optimal  semiconductors and insulators. The wide range of
transport theory. Once the pre-training was done,  electronic structural properties implies that various
we fine-tuned the encoder on the fine-tuning dataset ~ novel physical properties appear in these newly dis-
to obtain a classifier model. Then, the structured  covered altermagnetic materials, e.g. the anomalous
material information from the candidate dataset was ~ Hall effect, anomalous Kerr effect and topological
input into the classifier model to quantify the prob-  property, as demonstrated in theoretical analyses. It
ability as an indicator of whether each materialisan  is also worth noting that we discovered four i-wave
altermagnetic material. We filtered out the materials  altermagnetic materials for the first time, filling the
with probabilities greater than 0.9 as the candidate  gap in the literature. As a result, our proposed Al
altermagnetic materials. Finally, we employed the  search engine successfully breaks the bottleneck lim-
first-principles electronic structure calculations itation of existing discovery methods based on sym-
to estimate the ground magnetic structure of the = metry delimited rules, serves as a critical counterpart
candidate material to identify altermagnets. (It has  to such methods and is applicable to discovering new
been quite common to use first-principles electronic  altermagnetic materials directly from a large set of
structure calculations, e.g. density functional theory  candidates without any prior knowledge of the mag-
(DFT), to predict the material property, which has  netic structure information. We conclude that the AI
been widely used in the community and proven  search engine suggestsa set of new altermagnetic ma-
to possess excellent alignment with experimental  terials with unique properties, outlining its potential
results for crystal materials [42-45].) Furthermore,  foraccelerated discovery of the materials with target-
the confirmed altermagnetic materials were added  ing properties. We also discuss the pathway of devel-
to the fine-tuning dataset for an iterative process of ~ oping pre-trained graph models for the discovery of
fine-tuning and classifier prediction, reinforcing the  other types of materials.
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RESULTS
Dataset screening via symmetry analysis

Our goal is to screen altermagnetic materials from
the Materials Project [27], which contains 154 718
crystal materials. Since this materials database in-
cludes both magnetic and non-magnetic materials,
we first filtered out materials containing magnetic
atoms. In this work, we considered materials with
3d transition metals or 4f rare earth elements. After
filtering and de-duplication, we obtained 91 649
potential magnetic materials. Because of the com-
plexity of the magnetic properties of materials with
multiple magnetic atoms, we further excluded such
materials, resulting in 68 116 potential magnetic
materials, which constitute the pre-training dataset.

Altermagnetism is characterized by compensated
antiparallel spin sublattices connected by the spin
symmetry {Cj‘ ||R;} transformation, but not con-
nected by the spin symmetry {Cj‘||1} or {Cj‘||‘[}
transformation. Since the space groups P1(1) and
P1(2) do not have R; symmetry, all materials with
space groups P1 and P1 symmetry are excluded from
the pre-training dataset. If collinear antiferromag-
nets have type-IV magnetic space group symmetry,
their compensated antiparallel spin sublattices must
be connected by the spin symmetry {C"||7} trans-
formation in a non-relativistic case. So all collinear
antiferromagnetic materials with type-IV magnetic
space group symmetry are conventional antiferro-
magnets but not altermagnets. Different from anti-
ferromagnetic materials with the type-IV magnetic
space group symmetry, the magnetic cell and crystal
cell of materials with type-III magnetic space group
symmetry are usually the same, which leads to these
materials without the spin symmetry {C2L ||T}. If the
magnetic cell of a collinear antiferromagnet is a su-
percell, whereas its spin arrangement breaks the spin
symmetry {C; ||}, then the collinear antiferromag-
net may be a supercell altermagnet [46]. Although
there exist four known supercell altermagnetic mate-
rials, we do not consider this situation and exclude
them in the positive samples. Since compensated an-
tiparallel spin sublattices in altermagnets require the
candidate magnetic materials to have an even num-
ber of magnetic atoms in their crystal primitive cell,
we first ruled out 18 546 magnetic materials with an
odd number of magnetic atoms in the primitive crys-
tal cell from the pre-training dataset.

Furthermore, magnetic materials with type-III
magnetic space group symmetry can be divided
into two classes according to space-inversion
symmetry. If the crystal structure of a collinear
antiferromagnet has no combination of space-
inversion and time-reversal symmetry, such a
material must be altermagnetic. Otherwise, if the
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collinear antiferromagnetic material has only a pair
of spin antiparalle] magnetic atoms in the prim-
itive crystal cell that are not located at invariant
space-inversion points, the pair of spin antiparallel
magnetic atoms must be connected by the spin sym-
metry {Cﬁ‘ ||I}. This class collinear antiferromagnets
are not altermagnetic materials (704S in total).
Therefore, based on symmetry analysis, we screened
out 25591 non-altermagnetic materials. These
materials, along with the known 148 altermagnetic
materials (e.g. as positive samples), constitute the
fine-tuning dataset. By removing the 25591 non-
altermagnetic materials and positive samples from
the pre-training dataset, we obtained the candidate
dataset (42377 materials). The aforementioned
screening process is depicted in Fig. S1. In the
following, we train a neural network to screen and
predict altermagnetic materials from the candidate
dataset.

Pre-training the GNN for material
discovery

Although AI methods have shown great potential
for material screening and discovery, there still re-
main numerous challenges in the field of discover-
ing altermagnetic materials that have not yet been
accommodated in existing research practices. In par-
ticular, training a reliable predictive model under
the condition of limited labels is intractable, e.g. the
number of known altermagnetic materials, as posi-
tive samples (training labels), is limited (only 148 al-
termagnetic materials [3,23]). We address this chal-
lenge by introducing a pre-training and fine-tuning
technique, which was first proposed in the natu-
ral language processing field [47], and subsequently
demonstrated with remarkable capabilities for com-
puter vision [48] and bioinformatics [49]. Such a
technique pre-trains a self-supervised model first,
then refines it for a specific downstream task with
limited data, meanwhile maintaining a boosted per-
formance. Since each crystal material has a unique
structure-property relationship, e.g. the magnetic-
property-like spin pattern is closely related to the
crystal structure information, we hypothesize that
there is a functional correspondence between the
spin pattern and the crystal structure for a given ma-
terial candidate. Hence, we represent the material
crystal structures by multiedge graphs and establish
a pre-trained neural network model to extract their
corresponding latent features. The discovery of an
altermagnetic material process is then treated as a
downstream task by refining a classifier model based
on limited positive samples (e.g. 148 available alter-
magnetic materials).
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Figure 2. Network architectures of the auto-encoder and classifier. (a) Details of the auto-encoder model. The encoder
consists of three graph convolution layers denoted by ¢'"), ¢, ¥/, whose inputs are node features h! and neighbor fea-
tures H‘”/, where t = 0, 1, 2, respectively. The decoder is composed of a decoder module v, for reconstructing initial node
features and three decoder modules ¥\, v/, v ¥ for reconstructing a neighborhood set of node features. We minimize
the weighted sum of the reconstruction loss functions for both decoder modules. (b) Details of the v, module in the de-
coder. The ¥, module includes three MLPs (x,,, x, and x,) and a Gaussian sampler, while the y; module is composed
of a single MLP. (c) Details of the classifier model. The node features /7‘,.“' and the neighborhood set of node features /-/J'\U/:

are fed into the pre-trained encoder. The output node features h‘f' are then transformed to a latent vector /1, by a pooling
layer. Finally, another MLP and softmax module is designed to output the probability that quantifies whether the material is

altermagnetic.

As detailed in the symmetry analysis above, we
first construct the pre-training dataset and candidate
material dataset based on high-throughput screen-
ing and symmetry analysis (see Fig. 1(a)). The pre-
trained model is based on a GNN that leverages
material crystal structure information [37], consist-
ing of a graph convolutional network encoder, and
a decoder that reconstructs graph features based
on optimal transport theory [50]. Figure 1(b) de-
picts the schematic of the network, with the de-
tailed architecture shown in Fig. 2. The process of
inputting crystal structures into the model begins
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with a pre-processing stage, where the crystal struc-
ture information is transformed into a graph repre-
sentation. Then, we pre-train the model based on
the pre-training dataset that contains 68 116 materi-
als, and then fine-tune the pre-trained model based
on the fine-tuning dataset (148 altermagnetic ma-
terials plus 25 591 non-altermagnetic materials; see
Fig. 1(c)). (Note that there are some biases in the
negative sampling, but its influence on the predic-
tive performance of our Al model is negligible. This
is because the number of negative samples is sig-
nificantly larger, being 172 times greater than the
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number of positive samples.) During the fine-tuning,
we utilize the pre-trained encoder and employ
up-sampling techniques (duplication and rotation)
to balance the number of positive and negative sam-
ples for a binary classification task. Afterward, we
can obtain the classifier model, which is then used
to screen the altermagnetic materials (Fig. 1(d)).
All possible candidate crystal structures (42 377) are
input into the classifier model for prediction. The
model provides a probability estimate for each sam-
ple, and we selected the material with a probability
greater than 0.9 as the candidate material. Next, we
utilize the first-principles electronic structure calcu-
lations (Fig. 1(e)) to verify whether the candidates
are altermagnetic materials. Furthermore, once the
new altermagnetic materials are verified and con-
firmed, we add the new one to the fine-tuning dataset
and then re-perform the fine-tuning and prediction
iteratively. Through four rounds of iteration and
leveraging information from 148 known altermag-
netic materials, we identified S0 new altermagnetic
materials. A discussion of the model convergence
and the spin patterns’ distinguish ability is provided
in Note C within the online supplementary material.
Additional information for the pre-trained model is
given in Note A within the online supplementary
material.

To demonstrate the capability of our pre-trained
crystal material model, we fed all the candidate ma-
terials in batches into the pre-trained encoder that
provides a corresponding latent space vector for each
material. We utilized principal component analysis
for dimensionality reduction and performed feature
visualization and t-SNE visualization on the latent
space vectors (see Fig. S2). The results show that the
data in the candidate set have a clear clustering phe-
nomenon after pre-training, which indicates that the
pre-training process can group materials containing
similar information together.

Discovered altermagnetic materials

Based on the proposed Al search engine, we success-
fully discovered S0 new altermagnetic materials, in-
cluding 16 metals and 34 insulators (see Table 1).
The computational results for most of the newly
discovered altermagnetic materials (e.g. the first 23
materials listed in Table 1) are shown in Note B
and Figs S6-S17. Moreover, the d-wave, g-wave and
i-wave altermagnets can be found in the predicted 50
altermagnetic materials shown in Table 1. In particu-
lar, we predicted four i-wave altermagnetic materials
for the first time.

The 16 metallic altermagnetic materials can be di-
vided into two classes according to whether the in-
tegral of the Berry curvature of the occupied states
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over the Brillouin zone is zero, which depends on
the symmetry of the altermagnetic materials. Since
the easy magnetization axes of these materials are
in the x-y plane, the eight metallic altermagnetic
materials Nb, FeB,, Ta,FeB,, NdB,C,, Mg, FelrsB,,
MgzMHII’SBz, MgzNiII’SBz, SCZVII'SBz, SCzMnII'SBz
have non-zero Berry curvature for the integral of the
occupied states over the Brillouin zone according
to magnetic point group symmetry, implying that
odd-under-time-reversal responses (e.g. anomalous
Hall and Kerr effects) can be realized in these ma-
terials. In particular, the calculated intrinsic anoma-
lous Hall conductance of altermagnet Nb,FeB, is
—100 2 tecm™! [84], which is the same order
of magnitude as those of ferromagnetic metals.
Since the three altermagnetic materials NdB,C,,
Sc,MnlrsB,, Mg, NilrsB,, whose easy magnetiza-
tion axes are in the z direction, have zero Berry cur-
vature for the integral of the occupied states over
the Brillouin zone, the anomalous Hall effect is not
observed.

Interestingly, the metallic altermagnet NdB,C,
has odd-under-time-reversal Dirac fermions
protected by the spin symmetries {E||C,,} and
{CHIM, (%, %)} (see Fig. 3(b)), but Sc;MnlrsB,
and Mg,NilrsB, have odd-under-time-reversal
six-fold degenerate fermions (see panels (e) and
(h) of Fig. 3) on the I'-Z axis around the Fermi
level, which is protected by the spin point group
symmetry. When considering spin-orbit coupling
(SOC), the three metallic altermagnets NdB,C,,
Sc,MnlrsB, and Mg, NilrsB, have Dy, point group
symmetry that must be broken in ferromagnets,
and the C,, double point group symmetry protects
the odd-under-time-reversal Dirac fermions of the
metallic altermagnets Sc; MnlrsB, and Mg, NilrsB,
on the I'-Z axis (see panels (f) and (i) of Fig. 3).
Moreover, the pair of odd-under-time-reversal Dirac
points in Mg, NilrsB, are very close to the Fermi
level, which is an advantage for investigating its
novel physical properties in experiments.

On the other hand, ferromagnetic semiconduc-
tors that have spintronic and transistor function-
alities could be applied to the next generation of
electronic devices. However, the ferromagnets are
usually metals with a high Curie temperature and
hold no brief for insulators with a high Curie temper-
ature. Altermagnets with compensated antiparallel
sublattices are not only in favor of insulators with a
high Neel temperature, but also have spintronic func-
tionality [3]. Thus, altermagnets open a new path-
way to bypass the difficulties of ferromagnets. Here,
we employed the LDA+U method [85] to predict
34 altermagnetic semiconductors (see Table S2).
Furthermore, altermagnetic FeHO, may be a spin-
triplet excitonic phase. From Fig. 4(i), we observe
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Table 1. Fifty newly discovered altermagnetic materials verified by electronic structure calculations.

Materials
Number Material Space group Anisotropy Conduction Project ID Reference
1 Nb,FeB, P4/mbm (127) g-wave M mp-1086660 [52]
2 TaFeB, P4/mbm (127) g-wave M mp-1095076 [53]
3 NdB,C, P4/mbm (127) g-wave M mp-5765 [s1]
4 Mg, Felrs B, P4/mbm (127) g-wave M mp-1188243 [54]
S Mg, MnlrsB, P4/mbm (127) g-wave M mp-1189623 [54]
6 Mg, NilrsB, P4/mbm (127) g-wave M mp-1188248 [54]
7 ScVIrs B, P4/mbm (127) g-wave M mp-20524 [ss]
8 ScyMnlrsB, P4/mbm (127) g-wave M mp-1208987 [ss]
9 CaLaFeAgOg Pc (7) d-wave M mp-1641528 NA
10 CaLaCr,;Og Pmn2; (31) d-wave M mp-1642123 NA
11 NiF3 R3c (167) i-wave M mp-561428 [s6]
12 GdB,C, P4/mbm (127) g-wave M mp-1080176 [57]
13 HoB,C, P4/mbm (127) g-wave M mp-20410 (58]
14 LuCrO; Pnma (62) d-wave M mp-755471 [59]
15 TaCoB, Pnma (62) d-wave M mp-1189690 NA
16 NdRuO3 Prnma (62) d-wave M mp-1200843 [60]
17 FeHO, Pmn2; (31) d-wave 1 mp-510670 [61]
18 NaFeO, Pna2; (33) d-wave 1 mp-21060 [62]
19 NaFeO, P41212 (92) d-wave 1 mp-21880 [63]
20 MnO, Pnma (62) d-wave 1 mp-19326 [64]
21 MnO, I4/m (87) d-wave I mp-19395 [65]
22 Ca3Cr, 07 Cmc2; (36) d-wave 1 mp-1575873 NA
23 ZrCrO3 Pnma (62) d-wave I mp-755055 NA
24 ZrMnOj3 R3c (161) i-wave I mp-754513 NA
25 VF; R3¢ (167) i-wave I mp-559931 [s6]
26 CrF3 R3c (167) i-wave I mp-560338 [s6]
27 MnO P63mc (186) g-wave 1 mp-999539 [66]
28 CaMnN, P63 /mmc (194) g-wave I mp-1246377 NA
29 BayFeGe, 07 P42;m (113) g-wave 1 mp-1190820 [67]
30 Ba, CoSi, O P42m (113) g-wave 1 mp-510015 [68]
31 Sr,CoGe, 07 P42;m (113) g-wave 1 mp-1191317 [69]
32 VE4 P21/c (14) d-wave I mp-760030 NA
33 CayCoTeOg P2, /c (14) d-wave I mp-552051 [70]
34 NiF, Pnnm (S8) d-wave 1 mp-556324 [71]
35 LiFe, F¢ P4ynm (102) d-wave 1 mp-557403 [72]
36 FeHO, P212,2; (19) d-wave 1 mp-625251 NA
37 CaMnOs3 Pnma (62) d-wave 1 mp-19201 [73]
38 CaVO; Pnma (62) d-wave 1 mp-22608 [74]
39 LaFeO3 Pnma (62) d-wave I mp-22590 [75]
40 LavVOs3 Pnma (62) d-wave 1 mp-19350 [76]
41 MnSeOy4 Pnma (62) d-wave 1 mp-817982 [77]
42 NaPr, 0sOg P2,/c (14) d-wave 1 mp-20009 [78]
43 NaPr,RuOg P2y /c (14) d-wave I mp-542512 [79]
44 NdRhO;3 Pnma (62) d-wave 1 mp-4582 [80]
45 PrRuO3 Pnma (62) d-wave 1 mp-20186 [81]
46 ScVO; Pnma (62) d-wave 1 mp-756546 [82]
47 SmRhO;3 Pnma (62) d-wave 1 mp-3317 [83]
48 CaLaCrMoOg Pc (7) d-wave 1 mp-1640189 NA
49 La;MnRhOg¢ P21 /c (14) d-wave 1 mp-1223338 NA
50 LiFeF, P2y /c (14) d-wave I mp-755632 NA

The table also lists the non-magnetic space group, even-parity wave anisotropy and metal(M) and insulator(I) conduction type. Altermagnetic NdB, C, is
confirmed by previous neutron scattering experiments [S1] and our symmetry analysis. Here ‘NA’ indicates that this material has not been experimentally

synthesized. The information of whether a material is a metal or an insulator is confirmed by DFT calculations.
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Figure 3. The crystal and electronic structures of altermagnets. (a) The NdB,C, crystal primitive cell with magnetic structure. (b, c) The electronic
band structure of altermagnetic NdB,C,. The electronic structure is calculated under the correlation interaction U = 5eV. (d) The Sc,MnlrsB; crystal
primitive cell with magnetic structure. (e, f) The electronic band structure of altermagnetic Sc,MnlrsB, without and with SOC, respectively. The electronic
structure is calculated under the correlation interaction U = 4 eV. (g) The Mg;NilrsB; crystal primitive cell with magnetic structure. (h, i) The electronic
band structure of altermagnetic Mg, NilrsB, without and with SOC, respectively. The electronic structure is calculated under the correlation interaction
U = 6.56 eV. The red and blue lines represent spin-up and spin-down energy bands, respectively.

that there is large spin splitting of 0.39 €V in the T-T"-
T directions and the spins of the valence and conduc-
tion band are opposite, which may result in the spin-
triplet excitonic phase [86]. Moreover, the energy
of the altermagnetic state (AFM1) is much lower
than that of the other three magnetic states (see
Fig. 4(g)), indicating that FeHO, may have a Neel
temperature above room temperature. Thus, alter-
magnetic FeHO, is a very interesting material that,
we believe, will attract both theoretical and exper-
imental interest. In addition, although NdRuOj is
an altermagnetic semimetal, it has a band gap along
the high-symmetry directions with spin splitting,
and its valence and conduction bands have opposite
spins (see panels e and f of Fig. SS). Thus, NdRuO;
may be a Bardeen—Cooper-Schrieffer-type triplet
exciton insulator [87]. In the following, we present
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in detail two altermagnetic materials that are a metal
and semiconductor, respectively.

Altermagnetic Nb,FeB, has space group
P4/mbm (127) symmetry, and the corresponding
elementary symmetry operations are Cy., C. (3, 5)
and I, which yield the point group Dyj. The crystal
structure of Nb,FeB, is composed of an Fe-B atom
layer and Nb atom layer, as shown in Fig. 5(a).
Moreover, the two Fe atoms in the primitive cell
are surrounded by two B atomic quadrilaterals with
different orientations (Fig. S(b)). Very recently,
Nb,FeB, has been predicted to be a Neel antiferro-
magnet, which is shown in Fig. 5(a). Because of the
anisotropic Fe-B quadrilateral, the spin-charge den-
sity of Fe atoms is anisotropic (see Fig. 5(d)). Thus,
compensated antiparallel spins are not connected
by the spin symmetry {C;[|I} or {Cy||t}, but are

G20z aunf £z uo 1sanb AQ GyS0E08/990/EMU//Z L /AI01HE/ISU/Wo0"dNo-ojwapede//:sdny Wwoly papeojumoq


https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf066#supplementary-data

Natl Sci Rev, 2025, Vol. 12, nwaf066

» " y  AFM2 0 V) 4
(b) R I i
— | =]
N {\w/
L L]
z >V\ e
/\\/yﬁ
x FM z y  AFM3 I XS YT Z TR AZ
(c) 3
o _________________
Z =
" 3 T m(T)

Figure 4. The crystal and electronic structures of altermagnet FeHO, (31). (a) The crystal primitive cell of altermagnetic FeHO, (31). (b—e) Four significant
magnetic structures of FeHO, (31). The arrows represent the magnetic moments of Fe. (f) The Brillouin zone (BZ) with high-symmetry points and lines of
altermagnetic FeHO, (31). (g) The relative energy of four significant magnetic states with the variation of correlation interaction U. (h, i) The electronic
band structure of FeHO; (31) without SOC. The red and blue lines represent the spin-up and spin-down energy bands, respectively. The electronic
structure is calculated under the correlation interaction U = 4 eV.

connected by the spin symmetry {C5||Cp,( %, %)} ;
that is, Nb,FeB, is an altermagnetic material. The
spin symmetry {Cy"[|M,(3, 3)} protects the spin
degeneracy in electronic bands on the k, = 0 and
7 planes; considering the spin symmetries {E||C,.},
altermagnetic Nb,FeB, has six node surfaces in the
Brillouin zone (see Fig. S(c)). Thus, Nb,FeB, is
a g-wave altermagnet described by the non-trivial
spin Laue group P'4/'m*m*m. Figure S(e) shows
that the electronic bands of altermagnetic Nb,FeB,
are spin degenerate along the high-symmetry di-
rections, which is consistent with our symmetry
analysis. As can be seen from Fig. 5(f), all the bands
are spin splitting and spin antisymmetric in the
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non-high-symmetry D-I'-m(D) direction, which
reflects the characteristics of g-wave spin polariza-
tion. On the other hand, the valence bands and the
conduction bands have multiple crossing points
in the high-symmetry and non-high-symmetry
directions, such as the I'-X and I'-D directions, in-
dicating that altermagnet Nb,FeB, is a topologically
non-trivial metal. When considering SOC, the easy
magnetization axis of altermagnet Nb,FeB, is along
the x direction. Accordingly, altermagnet Nb,FeB,
has Co. T, Cox(3. 3)T. Coy (5. 3)T. I, M. T, M,.(3,
% )T, M, point symmetries, which make the anoma-
lous Hall conductivities both o, and oy, zero, but
0y, non-zero, which has been predicted by our
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Figure 5. The crystal and electronic structures of altermagnetic Nb,FeB,. (a) The side view of altermagnetic Nb,FeB,. (b) The top view of alter-
magnetic Nb,FeB;. (c) The BZ with high-symmetry points of altermagnetic Nb,FeB,. The cyan plane represents the nodal surface of the BZ. Here m
represents the mirror symmetry M,. (d) The anisotropic spin-charge density deriving from an anisotropic crystal field. (e) The electronic band struc-
ture along high-symmetry directions without SOC. (f) The electronic band structure along non-high-symmetry directions without SOC. The red and
blue lines represent the spin-up and spin-down energy bands, respectively. The electronic structure is calculated under the correlation interaction
U=4.82eV.

previous theoretical study [84]. Likewise, the
anomalous Kerr effects can also be realized in
altermagnet Nb, FeB,.

The other altermagnetic material that we would
like to mention is NaFeO,. The crystal struc-
ture of NaFeO, is shown in panels (a)-(d) of
Fig. 6 with space group P/4;2,2 (92) symmetry.
The corresponding elementary symmetry opera-
tions are C4z(%, %, i) and sz(%, %, %), which
yield the point group D,. Since the d orbitals
of Fe are half occupied and the angle between
Fe-O-Fe is 136° in NaFeO,, the superexchange in-
teractions result in the nearest-neighbor Fe ions
having opposite magnetic moments and the next-
neighbor Fe ions having the same magnetic mo-
ments. Hence, the magnetic ground state of NaFeO,
will be AFM1 (see Fig. 6(b)). To verify our the-
oretical analysis, we consider four different mag-
netic structures, which are shown in panels (a)-
(d) of Fig. 6. It can be seen that the magnetic
structure AFM1 is always in the ground state of
NaFeO, under different correlation interactions
U (see Fig. 6(e) ). Moreover, the energy of the AFM1
state is much lower than that of the other three mag-
netic states (Fig. 6(e)), implying that NaFeO, may
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have a Neel temperature above room temperature.
We show in Fig. 6(b) that the magnetic and crystal
primitive cells of NaFeO, are the same, which break
{C2L||‘L'} spin symmetry. Thus, NaFeO, is an alter-
magnetic material due to the lack of space-inversion
symmetry.

We also calculated the electronic band structure
along the high-symmetry directions. Figure 6(f)
shows that altermagnet NaFeO, is a semiconductor
with a band gap of 2.75 eV. The spin-degenerate
bands in the I'-X, M*-A and Z-R directions (the
X-M direction) are protected by the spin symme-
try (GGG 5 DY (GGG, 3. DD
see Fig. 6(f). In fact, the spin symmetry
(Tl T(5, 3. 9} (TNCKT (3,3, D)) can
protect spin degeneracy of bands on the k, =0
and 7 (the k, = 0 and 7) planes. That is, alter-
magnet NaFeO, has four nodal surfaces in the
Brillouin zone. Thus, NaFeO, is a d-wave altermag-
net that is reflected by the spin-splitting bands in the
M-I'-M* directions. Considering the d-wave alter-
magnets allowing unique spin current by electrical
means [S], altermagnet NaFeO, may have both
spintronic and transistor functionalities at room
temperature.
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Figure 6. The crystal and electronic structures of altermagnetic NaFeO, (92). (a—d) The crystal structures of NaFeQ, (92) with FM, AFM1, AFM2 and
AFM3 structures. (e) Relative energy of different magnetic states with the variation of the correlation interaction U. (f) The electronic band structure of
NaFe0, (92) along high-symmetry directions without SOC. The red and blue lines represent the spin-up and spin-down energy bands, respectively. The
electronic structure is calculated under the correlation interaction U = 4 eV.

DISCUSSION

Al approaches have shown ground-breaking capa-
bilities in the discovery of materials in a large
search space. An intractable challenge faced by Al
lies in the shortage of sufficient labels or posi-
tive samples, e.g. in the case of the discovery of
altermagnetic materials. We herein introduced an
Al search engine that combines pre-trained crys-
tal models (GNN pre-training and optimal trans-
port theory) and physics-based methods (symme-
try analysis and first-principles electronic structure
calculations) to discover new altermagnetic materi-
als with specific properties under minimal labeled
sample conditions. Among the 91 649 possible can-
didates, we identified 50 new altermagnetic materi-
als covering metals, semiconductors and insulators.
Meanwhile, the proposed Al search engine also has
the few-shot learning ability. For example, it is ca-
pable of predicting 25 altermagnetic materials only
based on 14 positive samples (see Note C within the
online supplementary material). We observed var-
ious novel physical properties in these newly dis-
covered altermagnetic materials, e.g. the anomalous
Hall effect, anomalous Kerr effect and topological
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property. It is noted that four out of these 50 al-
termagnetic materials are i-wave types, discovered
for the first time, filling a gap in the literature. We
demonstrate that the AI search engine is capable
of uncovering a set of altermagnetic materials with
unique properties, highlighting its potential for ac-
celerated discovery of the materials with targeting
properties.

There still remain some potential limitations as-
sociated with the Al search engine. Firstly, we have
to admit that the issue of imbalance between pos-
itive and negative samples during the fine-tuning
stage exists, primarily due to the scarcity of known
positive samples. We have also discussed the po-
tential intrinsic error and computational cost as-
sociated with this Al search engine (see Note C
within the online supplementary material). Uti-
lizing the translational and rotational symmetries
of crystals to augment positive sample data may
help address this challenge, which will be demon-
strated in our future work. Secondly, if the materi-
als exhibit distinct magnetic phases at varying tem-
peratures, such as Mn;Si;, whose low-temperature
spin pattern is reported to be non-collinear and
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high-temperature spin pattern to be antiferromag-
netic [88], our current model is unable to predict
their magnetic properties. In such a case, if the ma-
terial with temperature-driven magnetic transition is
used as the positive sample to train the Al model,
the prediction might involve possible bias. We im-
prove our classifier model by considering tempera-
ture as a conditional input parameter to enhance its
capability in screening and predicting materials with
temperature-driven properties in the future. Thirdly,
in the calculations of magnetic ground states, we fo-
cus only on collinear magnetic structures and do not
consider non-collinear ones. This is because most
of the materials we calculate do not exhibit geomet-
ric frustration. Even for a few materials like CoFj3,
which exhibit triangular geometric frustration, previ-
ous studies did not consider non-collinear magnetic
structures [56]. Another limitation is that we have
not yet found ideal altermagnetic topological insula-
tors and altermagnetic topological semimetals (such
as odd-under-time-reversal Dirac semimetals, and
six-fold semimetals). Employing the decoder based
on the pre-trained model to generate potential al-
termagnetic materials holds promise in overcoming
this challenge. Furthermore, adopting a multimodal
pre-training approach offers the potential to further
enhance the accuracy of model predictions. The
current pre-training only considers the single modal-
ity of the crystal structure information. Leveraging
information from other modalities (such as textual
descriptions of crystal structures) may enhance the
performance of the pre-trained model. These meth-
ods will be further explored in our future research
endeavors.

In addition, an alternative to alter the proposed
Al model is to replace the classifier with a regres-
sor to predict the magnetic structure of a given ma-
terial candidate, where such a regressor can be fine-
tuned based on 2138 known magnetic structures in
the MAGNDATA database [28]. Afterward, sym-
metry analysis can be employed to identify the alter-
magnetism. However, since there are infinite types
of magnetic structures, accurately predicting the ex-
act type of magnetic structure for a given material re-
mains challenging. Therefore, an end-to-end classi-
fier in our proposed model, to directly judge whether
a crystal material is altermagnetic, is preferred, es-
pecially under the condition of very limited positive
samples.

It is well known in the community that the al-
termagnetism of 98% of candidates in the Materi-
als Project (>90000 materials), whose magnetic
structure information is unknown, has not yet been
confirmed and remains a substantially challenging
task. The brute-force approach leveraging our expert
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knowledge relies on trial and error by chance, hav-
ing an extremely low probability of correctly discov-
ering and confirming altermagnetic materials from
the large database. However, our Al model narrows
down the search space, predicts a list of highly possi-
ble candidate altermagnets and lifts the discovery ac-
curacy to a notable margin of about 31% (50/161),
which greatly accelerates our discovery of new al-
termagnetic materials. (If we calculate the magnetic
ground state of all materials, and then determine
whether these materials are altermagnetic by spin
symmetry, we can probably predict more altermag-
netic materials. However, this cost is extremely huge.
Given the scale and complexity of this task, it is un-
likely that DFT can be used to complete the above
brute-force computation for all candidate materials.)
The success of this engine lies not only in its pre-
dictive capabilities, but also in its ability to lever-
age extensive crystal structure data and deep learning
techniques, allowing for pre-training without explicit
reference to underlying physical laws, to reveal com-
plex correlations and patterns in new materials. Al-
though 161 altermagnetic materials have been con-
firmed by the symmetry analysis approach [23], the
urgency of discovering a variety of new altermag-
netic materials with different properties still remains.
Based on these existing altermagnetic materials con-
firmed by the spin space group, our Al search engine
could predict many more altermagnetic materials,
among which we expect to find a variety of altermag-
nets beyond the MAGNDATA database. For exam-
ple, over 300 additional candidate materials (uncon-
firmed yet by DFT calculations) were predicted by
the Al search engine and listed in our GitHub reposi-
tory (https://github.com/zfgao66/MatAltMag) for
open research. Nevertheless, obtaining the magnetic
ground state without experimental validation re-
mains a challenging problem. The magnetic state of
a material may be collinear or non-collinear, and the
magnetic cell may be a supercell of the crystal primi-
tive cell, which, in principle, lead to an infinite num-
ber of possibilities for the magnetic structure. Hence,
experimental efforts will help further validate our
discovery.

The proposed engine might also be applicable
to other types of materials whose properties are
strongly correlated to their crystal structures, such
as Bardeen—Cooper—Schrieffer superconductive
materials [89], the ferromagnetic semiconduc-
tor [90] and high-temperature superconductive
materials [91], among others. We will demonstrate
the potential of our proposed model for discovering
other materials in a future study. We envision this
effort may present new opportunities in the field of
material discovery across different disciplines.
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METHODS

We herein introduce the model details and imple-
mentation specifics.

Model details

Architecture overview

The concept of pre-training a large deep learn-
ing model and subsequently applying it to perform
downstream tasks originally originated in the field
of natural language processing (NLP). Large-scale
NLP models, such as GPT [92], and their deriva-
tives, employ transformers as text encoders. These
encoders transform input texts into embeddings and
establish pre-training objectives based on these em-
beddings, including generative loss and masked lan-
guage modeling loss. The pre-training process is typ-
ically unsupervised, based on large-scale unlabeled
samples. In contrast to traditional end-to-end neural
network models, pre-trained models can achieve ex-
cellent performance even with limited labeled pos-
itive samples. We thus consider utilizing the pre-
training technique to fully leverage the information
from existing crystal material databases and treat
the discovery of altermagnetic materials as a down-
stream task.

The objective of our proposed pre-training model
for crystal materials is to learn the information em-
bedded within crystal structures. To enhance the
learning capacity of the pre-training model, we pro-
posed a graph auto-encoder architecture (see Figs 1
and 2). The encoder consists of n layers of graph
convolution to learn crystal embeddings, while the
decoder employs the Wasserstein distance based on
optimal transport theory [40] for reconstruction
of the input crystal structures. Specifically, the en-
coder aims to encode the graphical representation
of crystal materials into a high-dimensional matrix,
while the goal of the decoder is to decode this one
back into the graphical representation of crystal ma-
terials. Through extensive training with unlabeled
data, the model effectively converges (as depicted
in the pre-training loss history shown in Fig. S3).
We believe that the pre-trained encoder can effec-
tively project the crystal structures into crystal em-
beddings. Leveraging the encoder of the pre-trained
model, we built the classifier model by incorporat-
ing a pooling layer and a softmax function. Subse-
quently, we trained the classifier model using the
fine-tuning dataset. This trained model is then em-
ployed to screen the candidate materials, offering the
probability of whether the target material is alter-
magnetic. The hyperparameters of the model were
obtained by grid search, as listed in Table SI. In
summary, our model comprises four main compo-
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nents: crystal data pre-processing, an encoder con-
structed using graph convolutional neural networks,
a decoder built based on optimal transport theory
and the construction of a classifier model. We elab-
orate on each of these components one by one as
follows.

Crystal data pre-processing

The data pre-processing procedure aims to bridge
the crystal structure and the crystal graph repre-
sentation [37]. The input of the model is a crys-
tal structure file (.cif) that contains three primitive
translation vectors of the primitive unit cell and
the positional information of each atom. It satis-
fies the organization invariance for atomic indexing
and the size invariance for unit cell selection. We
define the graph representation G(V,U, X) to de-
scribe the crystal structure information, where V'
denotes the set of nodes, U the set of edges and
X the set of features. First, we represent atoms as
nodes v; in a crystal graph representation, where
i=1,...,|V|.Since periodic boundary conditions
are taken into consideration, equivalent nodes are
merged to obtain irreducible nodes. Then, for each
node v;, we consider the neighborhood nodes v;,
where j =,1,..., || and NV is the set of neigh-
borhood nodes for v;. The k connections between
nodes v; and v; are denoted as the edge u(; ;) in
Op1v]
i i=1
are given through one-hot encoding based on the

the graph. Next, the initial node features {h

sequence of atoms in the crystal structure. We use
HJ(\/Q,) to denote the neighbor node features of node v;.
Here, v; denotes the ith node. Each edge u(; ;) € U
is represented by a feature vector u(; ;) that corre-
sponds to the kth bond linking node v; and node v;.
A feature vector h; € X encoding the attribute of the
atom corresponding to node v; € V is used to rep-
resent each node v;. An example for determining the
atom connectivity is illustrated in Fig. S4.

Crystal graph convolutional encoder

The encoder is used to represent the input crys-
tal structure information as a high-dimensional ma-
trix (Fig. 2(c)), which contains n convolutional
layers. The tth convolutional layer updates the
node feature vector hl-(t) via the convolution func-
tion hi(tH) = Conv(hi(t), hgt), u(,vyj)k). We denote
the graph convolution function by g, which itera-
tively updates the overall feature vector h;, whose
output is the input for the next step. The node index
in feature vector h; and length of h; are invariant for
every step. We construct the first concatenate neigh-
bor vector as zE:!)j)k = h,-(t) @ hgt) ® u(, j), in step

t, and then perform the convolution operation to
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update the feature as

hi(t—H) _ hi(t) + Z
v;eN;, v, EM; k

o (A) ©g(B),

(1)
where A denotes zEt)) w® + b(t) and B denotes

E:)]) w4 h(t)W(t) + b(t) Here ‘©’ denotes the
elementwise multiplication, the M; are the mag-
netic atoms corresponding to node v; and o is
the sigmoid activation function. Since the magnetic
atoms are important for the material to exhibit al-
termagnetic properties, we added the weight term
Wﬂ(f) for the magnetic atoms. The weight functions
I/Vc(t) , T/Vs(t) , Ww(f) are the convolution weight matrix,
self-weight matrix and magnetic atom weight matrix
of the tth layer, respectively. In equation (1), we in-
corporate the residual term hft) to enhance the train-
ing of the neural network.

Neighborhood Wasserstein reconstruction
decoder

The decoder (denoted by ¥ ) is utilized to restore the
input graph representation of a crystal from the crys-
tal embeddings, which mainly consists of two parts
(see Fig. 2(a)), one for node feature reconstruction
(denoted by v/,) and the other for adjacent node fea-
ture reconstruction (denoted by v/,), namely, =
(Y + ;). Here, ¥, = MLPS(hi(t)) is used to re-
construct the node features, where MLP indicates
a multilayer perception. The architecture of the de-
coder block, as shown in Fig. 2(b), follows the design
in [S0].

In particular, we adopt the n-hop neighboring
Wasserstein decoder for graph feature reconstruc-
tion. We can obtain {hi(o), HJ(V(E)} from the pre-
processing procedure. For each node v; € V, we up-
date the node representation hi(t-H) via the GNN
layer in the encoder, which gathers information from

hi(t) and its neighbor representations H (Nt) , namely,

h-(tH) (f)(t)(h(t) H(t)) Note that the neighbor-
(t)

hood set of node features H” can be directly assem-
bled based on the node adjacency. Consequently, we
solve the following optimization problem to train the
network:

argmin,, , Z L (hi(t)’ H/(\;,)’ " (hi(t+l)7 HJ(\ZH))).

)

Here L(-, -) denotes the reconstruction loss over
0 <t < n.Theloss function £ can be decomposed
into two distinct elements, each gauging the recon-
struction of self and neighborhood node features,
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respectively, written as

£ (10,9, (4)

n—1
© pl)
+hy ) L, (HQ - Hy, ) ;
t=0
(3)

where H(t) (H'l)(h(tﬂ) H(Hl)) denotes the
reconstructed nelghborhood set of node features
based on the sampling network shown in Fig. 2(b).
Here Q; C N, denotes the set of g samples of neigh-
borhood nodes for v;; A, and A, are the weighting co-
efficients and £, stands for the reconstruction error
of the node features, given by

£ (19,17 = 1. ()

(4)

In equation (3), £,, is the loss function used to mea-

sure the reconstruction of the neighborhood set of

node features Hé) Inspired by Tang et al. [50], we

evaluate thisloss function by a Monte Carlo method.
Specifically, for node v;, the distribution of its neigh-
borhood information can be empirically represented

by 771-“) , defined as

fPi(t) _ Z 5}([?)’ (5)

v;eN;

where 8( ) denotes the Dirac delta function. Here,
we adopt the 2-Wasserstein distance, which mea-
sures the similarity between two distributions, to
construct the loss [S0], expressed as

£ (YY) = w2 (PO.HD). @

In our experiments, we fix ¢ = 10 based on a Hun-
garian matching, which avoids heavy computational
overhead while retaining accuracy, when evaluating
equation (6) during training.

Classifier model

The classifier model is constructed by adding a pool-
ing layer and a softmax module after the encoder of
the pre-trained model (see Fig. 2(c)). The pooling
layer is applied to the embedding of the pre-trained
encoder to generate an overall feature vector h, that
can be represented by a pooling function given by
hy = Pool (K", 1, ... n® . ),
is the number of convolution layers and N is the
number of nodes in the graph. The softmax mod-

where n

ule in the classifier model ensures that the output
for each candidate material through the model is a
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probability in the range [0, 1], representing the like-
lihood of the candidate material being an altermag-
netic material.

Implementation details

The pre-training model

To extract the crystal embeddings of the candidate
materials, we employ a graph convolution neural
network as an encoder, which consists of three graph
convolution layers. (We use the code of CGCNN
to construct the encoder module [37] to construct
the encoder module, whose GitHub link is https://
github.com/txie-93/cgenn  and commit ID is
‘f42ab233c4ee0c416879d6bc2d22a264418413ad’)
For classification, we utilize a pooling layer
and a multilayer perceptron as the projection
head, comprising two fully connected layers
with a rectified linear unit activation layer and a
dropout layer. (We use the code of NWR-GAE
to construct the auto-decoder module [SO] to
construct the auto-decoder module and com-
pute loss, whose GitHub link is https://github.
com/mtang724/NWR-GAE and commit ID is
‘€9aee572009f6c2150cf68fc173c2af3094a7205’) In
terms of optimization, we use the Adam optimizer
with a learning rate of 0.001. Additionally, we imple-
ment MultiStepLR with milestones set at 100. To
ensure stability during training, we train our classi-
fier model with a dropout rate of 0.25. This is done
using a batch size of 512 and training over 500 epochs
on two NVIDIA A100 GPUs. We then label these
materials whose probabilities exceed 0.9 as potential
altermagnetic candidates in all experiments. To train
and evaluate our model efficiently, we leverage the
distributed deep learning framework Accelerate.
More details of the model training are discussed in
Note A within the online supplementary material.
Given this specific network architecture, we can
complete the training and evaluation process of
the classifier model in less than 1.5 hours on our
datasets. This significantly improves the overall
efficiency of our proposed workflow.

First-principles electronic calculation

The first-principles electronic structure calcula-
tions were performed in the framework of DFT
using the Vienna ab initio simulation package
(VASP) [93]. The generalized gradient approxi-
mation (GGA) of Perdew-Burke-Ernzerhof type
was adopted for the exchange-correlation func-
tional [94]. The projector-augmented-wave method
was employed to describe the interactions between
valence electrons and nuclei [95]. To account for
the correlation effects of 3d and 4f orbitals, we
performed GGA+U calculations by using the sim-
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plified rotationally invariant version introduced by
Dudarev et al. [85]. Detailed information regarding
the DFT calculations is given in Note D within the
online supplementary material.

DATA AVAILABILITY

The crystal data are available from the Materials Project database
via the web interface at https://materialsproject.org or the APT at
https://api.materialsproject.org.

All source codes to reproduce the results in this study are avail-
able from GitHub (https://github.com/zfga0o66/MatAltMag).
We rely on PyTorch (https://pytorch.org) for deep model train-
ing. We use specialized tools for VASP (https://www.vasp.at/).
The code of the pre-training model for crystal materials and the
pre-trained neural network weights are available from GitHub

(https://github.com/zfgao66/MatAltMag).

SUPPLEMENTARY DATA

Supplementary data are available at NSR online.
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