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Abstract

Developing inverse design methods for functional materials with specific properties is crit-
ical to advancing fields like renewable energy, catalysis, energy storage, and carbon capture.
Generative models based on diffusion principles can directly produce new materials that meet
performance constraints, thereby significantly accelerating the material design process. How-
ever, existing methods for generating and predicting crystal structures often remain limited by
low success rates. In this work, we propose a novel inverse material design generative frame-
work called InvDesFlow-AL, which is based on active learning strategies. This framework can
iteratively optimize the material generation process to gradually guide it towards desired per-
formance characteristics. In terms of crystal structure prediction, the InvDesFlow-AL model
achieves an RMSE of 0.0423 Å, representing an 32.96% improvement in performance compared
to exsisting generative models. Additionally, InvDesFlow-AL has been successfully validated in
the design of low-formation-energy and low-Ehull materials. It can systematically generate ma-
terials with progressively lower formation energies while continuously expanding the exploration
across diverse chemical spaces. Notably, through DFT structural relaxation validation, we iden-
tified 1,598,551 materials with Ehull < 50meV, indicating their thermodynamic stability and
atomic forces below 1e-4 eV/Å. These results fully demonstrate the effectiveness of the proposed
active learning-driven generative model in accelerating material discovery and inverse design.
To further prove the effectiveness of this method, we took the search for BCS superconductors
under ambient pressure as an example explored by InvDesFlow-AL. As a result, we successfully
identified Li2AuH6 as a conventional BCS superconductor with an ultra-high transition temper-
ature of 140 K. This discovery provides strong empirical support for the application of inverse
design in materials science.

Keywords: superconductor, pre-trained model, active learning, functional material discovery

Introduction

The discovery of new materials [1, 2] plays a vital role in advancing human production and daily
life, such as photovoltaic and battery materials [3], high-temperature superconducting materials [4,
5], novel catalysts and degradable materials [6], semiconductor materials [7] and biocompatible
materials [8]. The discovery of new materials not only accelerates technological progress but also
offers essential solutions to global challenges. Traditional material discovery faces limitations such as
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long experimental cycles, uncertain research paths, and a lack of clear exploration directions. While
high-throughput screening methods based on density functional theory (DFT) [9] have accelerated
the discovery process, they still demand costly computational resources. In recent years, technologies
like large language models [10, 11], geometric graph neural networks [12, 13], and generative AI [14,
15] have demonstrated significant advantages in material generation and screening, further driving
new material discoveries. However, current generative models often fail to produce stable materials
based on DFT calculations, or are limited to a narrow subset of elements, or can only optimize a
very limited set of properties.

For example, generative AI faces limitations in material stability and functionality [2, 16–18],
where generated materials may fail in practical applications due to thermodynamic instability or
inaccurate functional property predictions. Moreover, discriminative AI struggles with overfitting
issues, particularly on small datasets, resulting in poor generalization ability across different ma-
terial systems (e.g., predicting the critical temperature Tc of superconductors [9]). Theoretically
viable materials may also prove impractical in experiments due to synthesis challenges. Future
research needs to address these challenges to shift from generating “feasible materials” to producing
“manufacturable materials”.

The current approaches for controlling the generation of functional materials primarily in-
clude adapter modules for conditional control [2] and latent variable decoding of material prop-
erties [17, 19]. Due to the large datasets available for some functional materials, such as formation
energy, magnetic density, band gap, or bulk modulus, these generative AI methods perform well.
However, for high-temperature superconductors, synthesizable materials, and stable materials, the
data is scarce, and the labeling costs are high. In this context, the aforementioned generative AI
methods fail to account for these challenges in utilizing minimal data for inverse materials design.
It is common knowledge that models trained with Adapter Modules do not perform as well as those
trained with full-parameter training. Inspired by reinforcement learning, we believe that active
learning can maximize model performance. Active learning’s iterative learning cycle allows the
model to actively select the most valuable data for improving its performance, significantly enhanc-
ing model efficacy, particularly in scenarios where data labeling is expensive or time-consuming.

In this study, we present InvDesFlow-AL, a material inverse design generation framework based
on active learning. This framework is capable of directing the generation of target functional mate-
rials and continuously optimizing the generation outputs through a step-by-step iterative process.
Furthermore, InvDesFlow-AL can adapt to a wide range of downstream tasks by altering the train-
ing dataset, thereby achieving efficient inverse material design (as shown in Figure 1). To this
end, we have combined a generative model that progressively refines atomic types, coordinates,
and periodic lattices with an online learning strategy. By selecting more valuable data from the
model’s generated results for labeling and training, we have significantly enhanced the performance
of the generative model. Compared with existing material generation models, InvDesFlow-AL has
reduced the root mean square error (RMSE) in crystal structure prediction tasks to 0.0423 Å, rep-
resenting a 32.96% improvement in performance over current methods (see Table 1 for details). In
terms of generating materials with low formation energy and low Ehull targets, InvDesFlow-AL has
successfully identified 1,598,551 materials with an Ehull<50meV (as shown in Figure 2). All these
materials have undergone structural relaxation, with interatomic forces less than 1 ˆ 10´4eV{Å
(achieving DFT precision). As a proof of concept, InvDesFlow-AL has generated the material with
the highest transition temperature in the current conventional superconducting system (Li2AuH6,
140 K) (as shown in Figure 11). Moreover, this method can also design materials under various
property constraints, such as ultra-high-temperature ceramics (as shown in Figure 4). Finally, we
summarized the current limitations of InvDesFlow-AL in terms of algorithms, data, and scientific
theory, and proposed corresponding improvement strategies. We also discussed its potential appli-

2



cations in areas such as electrode materials, hydrogen storage materials, and bioinspired materials,
as well as its prospects for facilitating experimental synthesis and industrial deployment.

Results

Active learning-based diffusion model.

InvDesFlow-AL is a active learning-based diffusion model for designing target functional inor-
ganic crystal materials across the periodic table. The diffusion model generate samples by reversing
a fixed corruption process. Following the conventions of existing generative models for crystal ma-
trials [2, 16, 20], we define a crystal material by its unit cell, which includes atom types A (i.e.,
chemical elements), coordinates X, and periodic lattice L (Supplementary Information section xxx).
For each component, we define a corruption process that takes into account its specific geometry and
has a physically motivated limiting noise distribution. Unlike previous generative models, we also
incorporate an active learning strategy that is actively selecting the most valuable data for labeling
and training to enhance its performance. Common strategies for identifying the most valuable data
include: the diversity sampling (DS) strategy, which ensures that the selected samples represent
different regions of the data distribution; the expected model change (EMC) strategy, which selects
samples that have the greatest impact on the model parameters; the query-by-committee (QBC)
strategy, which trains multiple models to form a “committee” and selects the most valuable samples.

To train the proposed InvDesFlow-AL, we utilized the Alex-MP-20 dataset [2], which was re-
leased by MatterGen and contains 607,683 crystalline materials, along with 381,000 inorganic ma-
terials [1] from the GNoME dataset.These datasets encompass both ordered and disordered crystal
structures and cover a wide range of inorganic materials, including conductors, semiconductors, in-
sulators, and magnetic materials (see Figure 1). The pretrained model employs an active learning-
based diversity sampling strategy to cover different regions of the inorganic materials distribution.
It is capable of unconditionally generating crystal structures with high stability, uniqueness, and
novelty. Furthermore, the model can be fine-tuned to generate materials with specific functional
properties. InvDesFlow-AL has been successfully applied and demonstrated its feasibility in three
tasks: generation of low formation energy materials, generation of high-temperature superconduct-
ing materials, and crystal structure prediction. In these tasks, we implemented multiple rounds of
fine-tuning (Figure 1) for the generative model. The initial fine-tuning utilized crystal data from
target functional materials, while subsequent iterations of fine-tuning employed crystal data gener-
ated by the model itself. We regard this iterative fine-tuning process as an implementation of the
expected model change strategy. For different tasks, InvDesFlow-AL using different QBC methods
to select suitable crystal data. These QBCs are designed as multi-objective functions and are used
to evaluate the most valuable data.

The pre-trained crystal generation mode of InvDesFlow-AL is trained on a large-scale inorganic
materials dataset, demonstrating strong performance in material novelty (Supplementary Fig. S4)
and excellent stability (Figure 2). Compared to MatterGen [2], which adopts adapter-based fine-
tuning for inverse design of functional materials, InvDesFlow-AL leverages full-parameter fine-tuning
across the entire architecture. This approach demonstrates better adaptability to downstream tasks,
as extensively validated in domains such as large language models [21, 22] and computer vision [23].
For crystal representation, InvDesFlow-AL adopts fractional coordinates anchored to lattice vectors
as the fundamental basis, which explicitly preserves crystalline periodicity and enables more intuitive
handling of crystal symmetry. This methodology ensures higher efficiency and stability during both
model training and sampling processes, a conclusion further substantiated by subsequent crystal
structure prediction tasks.
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Figure 1: Active learning-based workflow for inversing design of materials. (a) Active learning-based
diffusion model for designing functional materials. The core of active learning lies in selecting the most valuable
data for models to enhance their performance. It primarily involves three strategies: diversity sampling, expected
model change, and query-by-committee. (b) Steps of InvDesFlow-AL consist of the following four stages: first, a
pre-trained crystal generation model is constructed. Second, this model is fine-tuned on functional materials. Third,
the fine-tuned generator is used to generate candidate crystal structures. Finally, a QBCs-based multi-objective
function is applied to select the most informative data, which is then used to further fine-tune the generative model.
(c) Applications of InvDesFlow-AL. Stable crystal generation, discovery of high-Tc superconductors, crystal structure
prediction, identification of ultra-high temperature ceramics, and guidance for experimental synthesis.

Generation of low formation energy materials

The pursuit of synthesizing materials with low formation energy (Eform) and minimal energy
above the convex hull (Ehull) constitutes the central objective of InvDesFlow-AL. The formation en-
ergy, quantifying the thermodynamic stability of a compound relative to its elemental constituents,
serves as a fundamental indicator of synthesizability—only materials with negative Eform are ther-
modynamically viable under equilibrium conditions. Energy above hull (Ehull), conversely, measures
a material’s metastability by evaluating its energetic proximity to the convex hull in phase space.
A low Ehull (typically < 50 meV/atom) signifies resilience against decomposition into competing
phases, a critical prerequisite for practical synthesis and operational durability.

In this section, we focus on the ability of the InvDesFlow-AL to generate materials with low
formation energy (Eform) and minimal energy above the convex hull (Ehull). To achieve ther-
modynamically favorable (low Eform), structurally stable (interatomic forces < 1e-4 eV/Å), and
compositionally novel candidates, we propose an active learning framework integrating EMC and
QBC strategies.

The pretrained model is fine-tuned on the GNoME dataset [1], focusing exclusively on crys-
tals with Eform ă ´0.5 eV to establish thermodynamic stability priors. The fine-tuned generator
synthesizes novel crystal structures, filtered by compositional uniqueness against existing materials
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Figure 2: InvDesFlow-AL for the generation of low formation energy materials. (a) InvDesFlow-AL
employs a crystal generation model to generate new crystal structures, followed by formation energy prediction using
FormEGNN. A lower threshold is applied to retain newly generated materials for fine-tuning the generative model.
After five iterations, a progressive decrease in formation energy is observed. (b) InvDesFlow-AL adopts the same
strategy to generate materials with low Ehull. Through multiple rounds of generation, a total of 1,610,600 new crystal
structures with Ehull < 50 meV have been obtained, expanding the chemical space exploration to a broader range of
atomic species. (c) Crystal structures containing 2, 3, ..., and up to 7 elements generated by InvDesFlow-AL.

databases (e.g., Materials Project [24]). Generated candidates undergo atomic-scale structural re-
laxation using the DPA-2 interatomic potential [25], which achieves DFT-level accuracy. Structures
failing force convergence criteria (||F|| ą 1e´ 4 eV/Å) are systematically discarded. The formation
energy prediction model (which we introduce here as FormEGNN) was developed in InvDesFlow-
1.0 [26]. It predicts Eform for relaxed structures, with a dynamically adjusted threshold to retain only
the most stable candidates for subsequent generator retraining. The iterative refinement process
is driven by EMC-guided data selection, where a committee consisting of DPA-2 and FormEGNN
evaluates candidate materials using a multi-objective scoring function. Section provides a detailed
explanation of this multi-objective function. This closed-loop paradigm progressively biases the
generator toward materials with low formation energy and relaxed structures while maintaining
structural diversity.

InvDesFlow-AL iteratively generated and fine-tuned the model five times. The average formation
energies of the generated crystals in these five iterations were µ “ ´1.14,´2.03,´2.93,´3.56,´3.77,
with the number of generated structures being 80,707, 95,580, 97,379, 136,784, and 166,663, respec-
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tively, resulting in a total of 577,113 generated crystals. The dataset has been open-sourced 1. All
these structures achieved DFT relaxation accuracy. As shown in Figure 2 (a), the formation energy
of the generated crystals decreases with increasing iterations.

InvDesFlow-AL generates low-hull crystal structures through iterative optimization. During
each iteration, the Bohrium platform 2 is utilized to query the Ehull values of materials, and crys-
tals with lower Ehull values are selected to fine-tune the model. We have performed 10 rounds
of fine-tuning in total, generating 1,598,551 materials with formation energies below 50 meV (see
Supplementary Fig. S5). As shown in Figure 2 (b), to generate lower-Ehull crystal structures, the
elemental composition distribution of the generated crystals by InvDesFlow-AL differs significantly
from those in the Materials Project 3 database. InvDesFlow-AL exhibits a strong preference for
generating materials with higher atomic diversity, many of which are high-entropy alloys that do
not exist in existing databases. While binary and ternary chemical spaces will likely be exhaus-
tively explored by chemists in the near future, despite the experimental challenges in synthesizing
multi-component materials, we believe that these complex multi-element crystals will make ground-
breaking contributions to future advanced materials discovery, Figure 2 (c) shows the multicompo-
nent crystal structures generated by InvDesFlow-AL. All generated crystal structures will be fully
open-sourced to the community 4.

Generation of high-temperature superconducting materials

In this section, we apply InvDesFlow-AL to the discovery of high-temperature superconduct-
ing materials. High-temperature superconductors hold significant importance for achieving efficient
power transmission, controlled nuclear fusion energy generation, magnetic resonance imaging, and
superconducting quantum computing. Superconducting materials surpassing critical temperature
thresholds - including the McMillan limit (40 K), liquid nitrogen temperature regime (77 K), and
even room temperature - attract distinct levels of interest from physicists. For instance, hydrogen-
based systems like H3S (200 K) [27] and LaH10 (260 K) [28, 29] with exceptionally high transition
temperatures have drawn extensive research attention. Subsequent discoveries reported in [30], in-
cluding YH18 (183 K), AcH18 (206 K), LaH18 (271 K), and ThH18 (306 K), have further expanded
the family of hydride-based superconducting materials. However, these materials require extreme
high-pressure conditions for synthesis, which poses significant constraints on their practical appli-
cability. Consequently, the discovery of high-temperature superconductors under ambient pressure
has become particularly crucial. Notably, the experimental synthesis [5] of (La,Pr)3Ni2O7 (45 K)
under ambient pressure has garnered considerable attention as it exceeds the McMillan limit. Recent
advancements in high-throughput computing and machine learning techniques have accelerated the
discovery of superconducting materials, with Mg2XH6 (X = Rh, Ir, Pd, or Pt) [31–34] exhibiting a
Tc exceeding 80 K. These developments motivate our adoption of state-of-the-art AI technologies
to further expedite the exploration of superconducting materials.

The conventional high-throughput screening approach, constrained by the limited exploration of
chemical space, has shown fundamental limitations in discovering high-temperature superconduc-
tors. Our InvDesFlow-AL framework enables direct generation of materials with targeted properties,
facilitating exploration in unbounded chemical space. To generate materials with ambient-pressure
high-temperature superconductivity, we develop a multi-stage active learning strategy combining se-
quential model refinement and committee-based validation. The strategy initiates with a two-phase

1https://zenodo.org/records/15222702
2https://github.com/deepmodeling/openlam
3https://legacy.materialsproject.org/
4https://zenodo.org/records/15221067
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expected model change optimization. Phase I conducts domain adaptation through fine-tuning
on metallic materials from the pre-training dataset, establishing essential electronic conductivity
priors. Phase II implements superconducting specialization using recently discovered conventional
superconductors [31–34], progressively aligning the model’s generative space with superconduct-
ing characteristics. This sequential refinement ensures structural validity while enhancing target
property awareness.

The optimized generator produces candidate superconductors that undergo dual-stage valida-
tion. We firstly introduce an superconducting graph neural network (SuperconGNN) to screen
candidates by predicted critical temperature (Tc ą 20 K threshold). Subsequently, we adopt DFT
calculations to verify electronic structure features and superconducting stability. Validated materi-
als enrich the training dataset through an active learning loop governed by a query-by-committee
strategy. The iterative refinement process is driven by QBC-guided data selection, where a com-
mittee consisting of SuperconGNN and DFT evaluates candidate materials using a multi-objective
scoring function. Section provides a detailed explanation of this multi-objective function.
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Figure 3: InvDesFlow-AL for discovering novel high-temperature superconducting materials. (a)
Comparison of previously reported high-temperature superconductors and newly discovered materials generated by
InvDesFlow-AL. The superconducting transition temperatures of these newly discovered materials span a wide range,
from the McMillan limit to the liquid nitrogen temperature region. The inset in (a) shows the crystal structure of
Li2AuH6. (b) Phonon dispersion and phonon density of states of Li2AuH6, indicating its dynamical stability. (c)
Electronic band structure and density of states of Li2AuH6.

As shown in Figure 11 (a), through multiple iterative generation cycles, InvDesFlow-AL has iden-
tified superconducting materials spanning a wide temperature range, from low to high Tc. Notably,
K2GaCuH6 and Na2GaCuH6 exhibit critical temperatures exceeding the McMillan limit (40 K),
while Li2AuH6 and Na2LiAgH6 surpass the liquid nitrogen temperature threshold (77 K). Remark-
ably, Li2AuH6 reaches approximately 140 K, representing the highest Tc achieved by conventional
superconductors to date.
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Figure 11 (b) presents the phonon dispersion relations and phonon density of states (DOS) of
Li2AuH6 , demonstrating its dynamical stability. Figure 11 (c) presents the electronic structure of
Li2AuH6, revealing its metallic character with multiple bands crossing the Fermi level. The atomic
orbital-projected density of states (PDOS) analysis demonstrates that electronic states near the
Fermi level are predominantly contributed by the Au-H octahedral coordination. A van Hove singu-
larity is identified at the W point, generating a pronounced PDOS peak at the Fermi level, which is
often associated with enhanced electronic correlations. The phonon dispersion of Li2AuH6 exhibits
no imaginary frequencies at ambient pressure, confirming its dynamic stability. The spectrum con-
sists of three distinct frequency regions separated by two energy gaps: the high-frequency region
(ą 120 meV), dominated by hydrogen vibrations; the intermediate-frequency region (60´100 meV),
primarily composed of H-related vibrations with partial Au contributions; and the low-frequency
region (ă 50 meV), where mixed vibrations of Au and Li atoms are observed. The Eliashberg
spectral function α2F pωq and the cumulative electron-phonon coupling (EPC) constant λpωq are
displayed in the inset, with the total EPC constant calculated to be λ “ 2.84. The strong EPC
predominantly arises from three key phonon modes: the Eg mode at Γ (140 meV), the A1g mode
at X (20 meV), and the Eg mode at X (30 meV). First-principles analysis reveals that the ro-
bust electron-phonon interactions in Li2AuH6 originate primarily from the vibrational modes of
the Au-H octahedral framework and Li atoms, which induce significant charge density modula-
tions and drive strong Cooper pairing. This exceptionally large λ value places Li2AuH6 among the
strongest electron-phonon coupled superconductors predicted to date, highlighting its potential as
a promising high-temperature conventional superconductor. For a more detailed analysis of the
Li2AuH6 crystalline material and its synthesis pathway, please refer to our another work [35]. A
variety of additional superconducting materials were also discovered by InvDesFlow-AL, with their
corresponding DFT calculation results presented in Supplementary Note A.

Stable structure prediction task

The crystal structure prediction task (CSP) is of great significance for accelerating the discovery
of new materials, understanding the fundamental laws of matter, and guiding experimental synthesis.
In recent years, AI methods such as CDVAE [20], DiffCSP [16], and CrystaLLM [11] have achieved
promising results in this task. However, these methods often require multiple samplings and do not
provide a clear approach for selecting the best structure from the multiple predictions. As a result,
the results from multiple samplings do not necessarily reflect the true prediction accuracy. We have
significantly improved the accuracy of crystal structure prediction using an active learning-based
approach, with the single-prediction accuracy surpassing the current best methods.

It is important to note that the functional material generation described in previous sections
employs a de novo generative model , where the number of atoms in the unit cell serves as a
conditional constraint. In contrast, the CSP task focuses on predicting crystal structures with
fixed atomic compositions. For the CSP implementation, we first adopted a diversity sampling
strategy to ensure the model learns structural information across diverse data distributions. This
process utilized the Alex-MP-20 dataset released by MattergGen [2] and crystal structures from
GNoME [1], with rigorous exclusion of test sets including Perov-5, MP-20, and MPTS-52 during
data preprocessing. Using the expected model change strategy, we fine-tuned the model on the
corresponding structure prediction training sets (Perov-5, MP-20, MPTS-52).

Additionally, we utilized de novo generative model and fine-tuned it on the aforementioned
training set. Based on the atomic number distribution, we generated 100,000 crystal structures. For
the generated materials, structural relaxation was performed using the DPA2 potential function to
filter out structurally stable materials. Subsequently, we employed the formation energy prediction
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model FormEGNN to identify crystal structures with the same chemical formula but lower structural
energy, and then fine-tuned the model again. The feedback from DPA2 and FormEGNN is referred
to as an active learning-based query-by-committee, where the committee assists in selecting the
most valuable samples. A multi-objective scoring function is used here, which will be introduced in
section .

As shown in Table 1, MP-20 is a test set with a maximum of 20 atoms per unit cell, representing
conventional crystalline materials in existing databases like the Materials Project 5 [24]. On the
MP-20 test set, InvDesFlow-AL achieved an RMSE of 0.0423 Å, surpassing not only the recently
popular large language model-based crystal structure prediction algorithm CrystaLLM [11] but
also outperforming state-of-the-art methods such as DiffCSP [16], CDVAE [20], and EquiCSP [36].
MPTS-52, a dataset allowing up to 52 atoms per unit cell, further demonstrated the robustness of
our approach. InvDesFlow-AL achieved an RMSE of 0.0725 Å, representing a 37% improvement
over EquiCSP [36].

Table 1: Results on crystal structure prediction task. MR stands for Match Rate.

Perov-5 MP-20 MPTS-52
MR (%) RMSE MR (%) RMSE MR (%) RMSE

RS 36.56 0.0886 11.49 0.2822 2.68 0.3444
BO 55.09 0.2037 12.68 0.2816 6.69 0.3444
PSO 21.88 0.0844 4.35 0.1670 1.09 0.2390

P-cG-SchNet [37] 48.22 0.4179 15.39 0.3762 3.67 0.4115
CDVAE [20] 45.31 0.1138 33.90 0.1045 5.34 0.2106
DiffCSP [16] 52.02 0.0760 51.49 0.0631 12.19 0.1786
CrystaLLM [11] 47.95 0.0966 55.85 0.0437 17.47 0.1113
EquiCSP [36] 52.02 0.0707 57.39 0.0510 14.85 0.1169

InvDesFlow-AL 52.86 0.0703 60.83 0.0423 23.72 0.0725

Other Application Demonstrations

Ultra-high temperature ceramics (UHTCs) [38] constitute a category of advanced materials
that preserve exceptional mechanical robustness and thermophysical stability under extreme con-
ditions, including ultra-high temperatures (>2000 °C), aggressive oxidation, and corrosive atmo-
spheres. These materials exhibit critical application value in aerospace, defense, and energy en-
gineering. UHTCs are predominantly composed of refractory transition-metal borides, carbides,
and nitrides, such as borides (XB2, X = Zr, Hf, Ta) and carbides (XC, X = Zr, Hf, Ta, Ti),
all of which possess melting points exceeding 3000 °C. Owing to their superior integrated proper-
ties—encompassing oxidation/ablation resistance, high-temperature strength retention, and thermal
shock resilience—UHTCs have attracted extensive scientific attention, particularly for applications
in thermal protection systems of hypersonic vehicles and next-generation nuclear reactors.

We applied InvDesFlow-AL to generate UHTCs. This section aims to demonstrate the gener-
alization capability of the pretrained model. We collected crystal structure data for 14 UHTCs,
such as ZrB2, HfC, TiC. Based on the pre-trained crystal generation model, we first fine-tuned it
on the 14 UHTC crystal materials. Using the fine-tuned generative model, we then generated 100
crystal structures, achieving 100% coverage of the 14 UHTC materials in the training set. Among

5https://legacy.materialsproject.org/
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Figure 4: InvDesFlow-AL for generating ultra-high-temperature ceramics. (a)-(c) Synthesized UHTCs
(ZrB2, HfC, TiC) existing in the fine-tuning dataset, demonstrating the model’s capacity to reproduce known high-
performance ceramics. (d)-(f) Novel UHTCs (TaB2, ZrC, HfN) absent from the training data, whose exceptional
properties—high-temperature resistance, oxidation resistance, and thermal shock resilience—have been validated
through theoretical/experimental studies. This systematic validation underscores InvDesFlow-AL’s capability to
design unreported, high-stability ceramics beyond existing databases.

the remaining generated materials, we checked whether their chemical formulas had been previously
synthesized or calculated using DFT. Three materials (Figure 4 (d)-(f)), TaB2, ZrC, and HfN, were
found to have been experimentally validated. TaB2 has a high melting point and excellent wear
resistance, making it an ideal choice for ultra-high-temperature ceramic materials [39]. It can be
synthesized using high-temperature synthesis [40], chemical vapor deposition, and sol-gel techniques.
ZrC has a NaCl-type structure with a melting point of 3540°C and is used as a nuclear fuel cladding
material [41]. HfN exhibits high infrared reflectance and can be applied as a thermal control coating
for satellites [42].

Discussion

From electronic devices and aerospace to quantum computing and energy transport and storage,
the advancement of almost every frontier technology depends on breakthroughs in novel functional
materials. We introduce InvDesFlow-AL, an active learning-based inverse materials design frame-
work. Through InvDesFlow-AL, scientists can specify target properties—such as superconductivity,
topology, and magnetism—to generate candinate crystal structures, thereby overcoming the lim-
itations of empirical approaches. InvDesFlow-AL integrates generative AI, quantum mechanical
methods, and thermodynamic and kinetic modeling to enable multiscale simulation for the dis-
covery of new functional materials. In crystal-structure prediction, our model achieves a RMSE of
0.0423 Å, which is close to the typical systematic error observed in X-ray diffraction (XRD) measure-
ments due to instrument calibration, sample preparation, and data processing. In the generation
of low-formation-energy and low-Ehull materials, InvDesFlow-AL demonstrates the effectiveness
of active learning through multiple iterations. Each round produces materials with progressively
lower formation energies, ultimately generating 1,598,551 materials with Ehull < 50 meV. For high-
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temperature superconductor discovery, our framework identified Li2AuH6 as a candidate with an
ultra-high superconducting transition temperature of 140 K. Additionally, we discovered a series
of novel superconductors that span the range between the McMillan limit and the liquid nitrogen
temperature regime. Outstanding materials of interest to humanity often lie outside existing crystal
structure databases, limiting the performance of adapter-based or latent-space-controlled genera-
tive models when the training data is insufficient. InvDesFlow-AL is designed to overcome this
constraint. By leveraging an active learning strategy, the framework uses data generated by the
model, filters it using QBCs, and fine-tunes the generative model over multiple iterations. As a
result, InvDesFlow-AL continuously evolves to generate increasingly superior functional materials.

However, whether the generative model within InvDesFlow-AL can successfully discover supe-
rior materials depends critically on the quality of the pretrain data, architecture of the generative
model, the design of the QBCs strategy, and the advancement of scientific theory. Different classes
of functional materials exhibit varying degrees of data availability. For instance, high-temperature
superconductors under ambient pressure are extremely scarce, whereas more than 20,000 supercon-
ductors with transition temperatures below 10 K have already been identified. Traditional high-
throughput DFT calculations provide a broader dataset, and with the aid of machine learning, this
field is expected to yield an increasing number of high-quality data points [43]. We are currently
using an equivariant GNN architecture based on EGNN [44] to implement a crystal generation
model. However, AlphaFold 3 [45] demonstrates that equivariance can be achieved through data
augmentation (random rotations and translations), effectively eliminating the need for architectural
equivariance, while achieving state-of-the-art performance in molecular docking. This inspires us
to explore crystal representation architectures beyond the constraints of equivariant networks. We
currently use a QBC framework composed of AI models and DFT calculations to effectively screen
for high-quality data. However, the computational cost of DFT remains prohibitive. In the future,
AI models could fully replace DFT, enabling the screening of hundreds of millions of hypotheti-
cal crystal structures. Tools such as DeepH [46], which aim to replace first-principles calculations
with AI, are a promising step in this direction, although they are currently unable to perform fully
end-to-end predictions for arbitrary crystal structures. Furthermore, the development of scientific
theory itself may impose limitations on new materials discovery. For example, recent studies [47]
have suggested that Li2AuH6 and Li2AgH6 represent the upper bound of the superconducting tran-
sition temperature for conventional BCS superconductors under ambient pressure. If this conclusion
holds true, it would imply that the search for new materials within this system is nearly exhausted.

With the deep integration of artificial intelligence into materials science, we anticipate that the
generalized InvDesFlow-AL framework will continue to unleash its potential in several key materials
domains in the future. In the domain of high-performance battery electrode materials, enhancing en-
ergy density fundamentally relies on the development of electrodes with both high capacity and high
voltage [48]. The InvDesFlow-AL framework can construct multi-objective scoring function—based
on theoretical capacity, voltage window, and electrochemical stability, thereby enabling the gener-
ation of novel anode and cathode candidates that simultaneously exhibit high theoretical capacity
and high operating voltage [49]. In the context of the green energy transition, the development
of lightweight, high-capacity hydrogen storage materials [50] remains a critical bottleneck for the
widespread adoption of hydrogen energy. Conventional approaches struggle to systematically iden-
tify materials that simultaneously meet key criteria such as low dehydrogenation temperature, high
reversible capacity, and appropriate thermodynamic stability. The InvDesFlow-AL framework offers
a natural advantage in optimizing hydrogen storage performance by constructing multi-objective
scoring functions targeting hydrogen adsorption/desorption characteristics [51]. This enables the
discovery of novel magnesium-based alloys, hydrides, and even composite materials with enhanced
hydrogen storage capabilities. For next-generation bioinspired robotics, mechanical flexibility and
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stimuli responsiveness are essential for achieving closed-loop control encompassing perception, re-
sponse, and regulation [52]. Looking ahead, the InvDesFlow-AL framework can be extended by
constructing multi-objective scoring functions targeting properties such as flexibility, shape-memory
behavior, and self-healing capabilities, thereby facilitating the rational design of novel intelligent
materials for bioinspired applications. This approach has the potential to significantly accelerate
the development of advanced humanoid robots. The ultimate goal of InvDesFlow-AL is to bridge
computational discovery with experimental synthesis and industrial application, going beyond theo-
retical predictions. Leveraging its active learning mechanism, the candidate pool can be dynamically
refined to prioritize the synthesis of high-value materials. Moreover, by integrating metrics such
as cost evaluation and environmental sustainability, the framework offers robust decision-making
support for real-world applications. By continuously expanding the functional boundaries and ap-
plication depth of InvDesFlow-AL, we anticipate significant advancements in multiple strategic do-
mains, driving transformative breakthroughs in next-generation energy, intelligent manufacturing,
and bioengineering.

Methods

InvDesFlow-AL pretrained crystal generation model

Generating target functional materials is a crucial step in the inverse design of materials. How-
ever, prior to achieving desired attributes, generative models must ensure that synthesized ma-
terials inherently exhibit fundamental crystalline characteristics, including periodicity, symmetry,
interatomic interactions, and chemically reasonable stoichiometry. To this end, we propose a pre-
trained crystal generation model. In the following, we will introduce the data representation, model
architecture, and training method required for this model.

In crystalline materials, atoms arrange themselves in a periodic configuration where the fun-
damental building block is termed the unit cell, denoted as M “ pA,F ,Lq. This structural unit
consists of three primary components: A “ ra1,a2, ...,aN s P RhˆN encodes the chemical species
present in the unit cell, with h representing the dimensionality of atomic feature descriptors. The
spatial arrangement of atoms is specified by F “ rf1,f2, ...,fN s P R3ˆN , which records their three-
dimensional fractional coordinates. The periodicity of the crystal framework is defined through the
lattice matrix L “ rl1, l2, l3s P R3ˆ3, whose column vectors establish the basis vectors spanning
the crystalline lattice system. This pretrained model adopts the equivariant graph neural network
(EGNN) architecture [16, 44], which ensures translation equivariance by using relative coordinate
differences and achieves rotation/reflection equivariance through squared relative distances. Addi-
tionally, EGNN maintains the permutation equivariance of graph neural networks, ensuring that
permuted input atom orders yield correspondingly permuted outputs. It is worth noting that there
are many frameworks for achieving equivariance, such as e3nn [53] 6 based on spherical harmonic
representations, tensor field networks [54], and other high-order tensor product networks. These net-
work architectures can be easily integrated into our active learning-based training. The pretrained
model is based on a diffusion generative model. During the generation process, the number of atoms
remains unchanged, while atomic types and the lattice matrix undergo noise addition and denoising
using the standard enoising diffusion probabilistic model [14] framework. Fractional coordinates,
on the other hand, are processed using a score-matching-based framework [15]. The loss function of
the pretrained and fine-tuned crystal generation model is given by: Ltotal “ Llattice `Latom `Lcoord.
The detailed training and sampling processes are shown in Algorithm 1 and Algorithm 2. Training

6https://e3nn.org/
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details and hyperparameter settings are provided in Supplementary Note B.

Algorithm 1 Training Procedure for InvDesFlow-AL Pretrained Crystal Generation Model
Require: Crystal structure (L0, A0, F0), atom count N , denoising network ϕ, diffusion steps T
Ensure: Optimized crystal generation model
1: Sample timestep t „ Ut1, T u and noise vectors:
2: ϵL, ϵA, ϵF „ N p0, Iq
3: Compute noise scheduling coefficients

?
ᾱt,

?
1 ´ ᾱt, and σt

4: Generate perturbed crystal components:
5: Lt “

?
ᾱtL0 `

?
1 ´ ᾱtϵL {Lattice diffusion}

6: At “
?
ᾱtA0 `

?
1 ´ ᾱtϵA {Atom type diffusion}

7: Ft “ wpF0 ` σtϵF q {Periodic coordinate perturbation}
8: Predict noise components via network:
9: pϵ̂L, ϵ̂A, ϵ̂F q Ð ϕpLt,At,Ft, N, tq

10: Calculate loss components:
11: Llattice Ð }ϵL ´ ϵ̂L}22
12: Latom Ð }ϵA ´ ϵ̂A}22
13: Lcoord Ð λt}∇Ft log qpFt|F0q ´ ϵ̂F }22
14: Optimize network parameters by minimizing Ltotal “ Llattice ` Latom ` Lcoord

Algorithm 2 Sampling Procedure for InvDesFlow-AL Pretrained Crystal Generation Model
Require: Atom count N , denoising model ϕ, diffusion steps T , Langevin step size γ
Ensure: Generated crystal structure pL0,A0,F0q

1: Initialize noise components:
2: LT „ N p0, Iq, AT „ N p0, Iq, FT „ Up0, 1q

3: Compute noise schedule parameters tαt, βt, σtu
T
t“1

4: for t Ð T, ¨ ¨ ¨ , 1 do
5: Sample process noises:
6: ϵL, ϵA, ϵF „ N p0, Iq
7: Predict denoising directions:
8: pϵ̂L, ϵ̂A, ϵ̂F q Ð ϕpLt,At,Ft, N, tq
9: Update lattice parameters:

10: Lt´1 Ð 1?
αt

´

Lt ´
βt?
1´ᾱt

ϵ̂L

¯

`

b

βt ¨
1´ᾱt´1

1´ᾱt
ϵL

11: Update atom types:
12: At´1 Ð 1?

αt

´

At ´
βt?
1´ᾱt

ϵ̂A

¯

`

b

βt ¨
1´ᾱt´1

1´ᾱt
ϵA

13: Intermediate coordinate prediction:

14: Ft´ 1
2

Ð w

ˆ

Ft ` pσ2
t ´ σ2

t´1qϵ̂F `
σt´1

?
σ2
t ´σ2

t´1

σt
ϵF

˙

15: Refine coordinate prediction:
16: p,ϵ̂

1
F q Ð ϕpLt´1,Ft´ 1

2
,At´1, N, t´ 1q

17: dt Ð γσ2
t´1{σ2

1 {Adaptive step scaling}

18: Ft´1 Ð w
´

Ft´ 1
2

` dtϵ̂
1
F `

?
2dtϵ

1
F

¯

19: end for
20: Return pL0,A0,F0q

Active learning-based materials inverse design

In the generation of low formation energy materials, to select the most valuable data for iterative
fine-tuning of the generative model in active learning, we designed a multi-objective scoring function
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to evaluate the newly generated crystal structures:

SForm
QBC “ p´Eformq

loooomoooon

Stability

¨ pIrelaxationq
looooomooooon

Force convergence

¨ pInoveltyq
looomooon

New crystal

. (1)

Similarly, in the generation of low Ehull materials, the multi-objective scoring function for selecting
the most valuable data is:

SHull
QBC “ p´Ehullq

looomooon

Synthesizability

¨ pIrelaxationq
looooomooooon

Force convergence

¨ pInoveltyq
looomooon

New crystal

. (2)

For the generation process of high-temperature superconducting materials, we devised a multi-
objective scoring function to assess the newly generated crystal structures to identify the most
valuable data for iterative fine-tuning of the generative model during active learning:

SSupercon
QBC “ TDFT

c or T SuperconGNN
c

looooooooooooooomooooooooooooooon

High-Tc priority

¨ pIrelaxationq
looooomooooon

Force convergence

¨ pInoveltyq
looomooon

New crystal

¨ pIEhullă50meVq
looooooomooooooon

Synthesizability

, (3)

the high-Tc priority term directs the model to generate structures within the high-temperature su-
perconducting material space, prioritizing the inclusion of DFT-confirmed superconducting phases.
Additionally, it utilizes SuperconGNN predictions of high-Tc superconducting materials as a refer-
ence for selection. The force convergence term ensures structural stability, while the synthesizability
term balances synthesizability. These conditions together form the criteria for selecting the most
valuable data. In the stable structure prediction task, the DPA-2 potential function optimizes the
generated structures, and FormEGNN is used to select the crystals with the lowest formation energy.
The multi-objective scoring function is given in Equation 1.

SuperconGNN is a superconducting transition temperature prediction model we developed based
on an equivariant graph neural network architecture. As shown in Figure 5 (a), the model consists
of a crystal graph input layer, a embedding layer, an encoding layer, and a prediction layer.

The crystal structure is represented as a geometric graph pV, Ermaxq, where nodes correspond
to atoms within the unit cell. We employ pymatgen 7 to construct a local environment graph
by identifying bonding interactions between atoms. The crystallographic information file (CIF)
of a structure is then converted into a graph representation that includes atomic types A, bond-
ing connectivity E , lattice parameters L, and periodic boundary information. In addition to the
bonding-based edges obtained from the local environment analysis, we further construct a geometric
graph based on atomic cartesian coordinates by connecting atoms within a cutoff distance of 5Å.
These distance-based connections are subsequently merged with the bonding-based edges to form
the final geometric graph representation:

Ermax “ E \ tpa, bq | rab ă rmaxu

eab “ MLPpeqpfab||µprabq @pa, bq P Ermax

V p0q
a “ MLPpvqpfaq @a P V

(4)

rab denotes the Euclidean distance between atoms a and b, fa represents the node scalar features,
and fab corresponds to the edge scalar features of the bond pa, bq if it belongs to E , and is 0 otherwise.
The node features fa consist of a one-hot encoding of the atomic type combined with global lattice
information pα, β, γ, a, b, cq. The edge features include a 2D one-hot encoding indicating the presence
or absence of a bond, along with the corresponding gaussian-expanded interatomic distance.

7https://pymatgen.org/
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Model ALIGNN ALIGNN-H SuperconGNN

Tc-5 23.53 82.35 82.35

Tc-10 8.33 58.33 91.67

Tc-15 0.00 54.54 100.00

Tc-20 0.00 33.33 100.00

Tc-40 0.00 0.00 62.50

Tc-60 0.00 0.00 25.00

l=0,1,2
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Figure 5: SuperconGNN model architecture and performance. (a) The input layer, Embedding layer,
encoding layer, and prediction layer of the crystal graph in SuperconGNN. (b) Performance comparison of different
models in predicting high-temperature superconducting materials. (c) Accuracy of AI predictions: whether AI can
correctly classify materials with superconducting transition temperatures above 5K, 10K, ..., up to 60K into their
corresponding intervals.

The Encoding layers are based on tensor product layers [53, 55, 56]. At each layer, messages are
generated for every node pair in the graph by applying tensor products between the current node
features and the spherical harmonic representation of the corresponding normalized edge vector.
The weights for these tensor products are computed as a function of the edge embeddings and the
scalar features of the two connected nodes, where the scalar features of node a are denoted as h0

a.
These messages are then aggregated at each node, and the resulting information is used to update
its feature representation.

ha Ð ha‘BNpaq

˜

1

|Na|

ÿ

bPNa

Y pr̂abq bψab
hb

¸

with ψab “ Ψpaqpeab,h
0
a,h

0
bq

(5)

Here, Na “ tb | pa, bq P Ermaxu denotes the set of neighboring atoms of atom a, where Ermax refers
to the set of edges within a predefined cutoff radius. Y represents the spherical harmonics up to
order ℓ “ 2, and BN indicates an equivariant batch normalization layer. All learnable parameters
are encapsulated in Ψ, which governs the weighting of tensor products. The resulting node features
ha include both scalar and vector representations. Considering that the superconducting transition
temperature of a crystal is invariant under SE(3) transformations, the final layer of our model
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employs an SE(3)-invariant linear layer from e3nn to map the node features of the crystal to an
SE(3)-invariant representation. Additionally, since Tc is strictly greater than zero, we apply a ReLU
activation function. Finally, the invariant representations of all atoms are aggregated to predict the
superconducting transition temperature.

The discovery of high-temperature superconducting materials has long been a central goal in
condensed matter physics. Accordingly, we focus on evaluating the model’s performance in the high-
Tc regime. The yellow region in Figure 5(b) illustrates the scatter plot of predicted values versus
DFT-calculated values for materials with Tc ą 20K, as predicted by ALIGNN [57], ALIGNN-H [58],
and our model SuperconGNN. A greater number of points deviating from the diagonal reference line
indicates superior model performance. As shown, SuperconGNN successfully predicts all supercon-
ducting materials with Tc ą 20K within the highlighted region. The baseline model ALIGNN was
trained on conventional superconductor datasets, whereas ALIGNN-H was trained specifically on
hydride data. Due to variations in DFT computational settings, theoretical predictions of supercon-
ducting transition temperature (Tc) can exhibit discrepancies exceeding 10 K. Moreover, differing
considerations of factors such as anisotropy among experts can lead to even larger deviations for
the same material, with reported Tc values differing by more than 50 K—for example, Mg2IrH6

has been predicted to exhibit a Tc of both 160 K [59] and 77 K [60]. Therefore, an excessive focus
on reducing the AI prediction error (e.g., MAE below 10 K) is not meaningful in the context of
discovering high-Tc superconductors. To address this, we propose a novel evaluation criterion, as
illustrated in Figure 5(c). Specifically, a prediction is considered correct if the model successfully
predicts Tc above a given threshold, which allows us to compute an accuracy score that better
reflects the model’s capability in the high-Tc regime. Using this approach, we observe that Super-
conGNN accurately predicts materials with Tc ą 15 K and Tc ą 20 K, significantly outperforming
the baseline models. In the regime beyond the McMillan limit, SuperconGNN also achieves high
predictive accuracy. Overall, SuperconGNN offers a novel, efficient, and accurate model for the
discovery of high-Tc superconductors.

Regarding data partitioning, we follow the same strategy described in Ref. [57], which involves
splitting the 626 conventional superconductor data points into training, validation, and test sets
with a ratio of 0.9:0.05:0.05. Since the specific data identifiers were not released by the authors, we
performed a new split using the same proportions. Given that the majority of these data points
correspond to materials with superconducting transition temperatures below 40 K, we further aug-
mented the training set with 59 hydride crystal structures reported in Ref. [58]. We directly adopted
the final checkpoint of our model as the screening model. To evaluate its screening capability, we
added 12 superconducting candidates discovered by InvDesFlow-AL to the test set and used them
to assess model performance in the corresponding figures.

We discuss the differences between InvDesFlow-AL and current reinforcement learning ap-
proaches. While reinforcement learning has been extensively applied in domains such as large lan-
guage models and robotic control, achieving remarkable outcomes like GPT4 [10] and DeepSeek [61],
methods like reinforcement learning from human feedback (RLHF) [62] require proximal policy
optimization (PPO) [63] and additional reward model training, resulting in high computational
complexity and training instability. Our active learning strategy resembles the direct preference
optimization (DPO) [64] in reinforcement learning by fine-tuning models directly with preference
data, which offers lower computational overhead and eliminates the need for separate reward mod-
eling. The distinction between InvDesFlow-AL and DPO lies in the former’s elimination of negative
sampling, instead directly updating the model towards the distribution of preferred data generation.

16



The first-principles electronic calculation.

As shown in Table 2, this includes the DFT Settings, EPC Calculation, and the corresponding
BCS Theory for Li2AuH6. As shown in Figure 11 (a), InvDesFlow-AL also identified many other
superconducting materials, with the corresponding DFT calculation results provided in the SM.Sec-
A.

Table 2: Summary of DFT computational parameters and electron-phonon coupling methodology.

Category Parameter/Method Specification

DFT Settings

Software package QUANTUM-ESPRESSO [65]
Exchange-correlation PBE-GGA [66]
Pseudopotentials Optimized norm-conserving Vanderbilt [67]
Cutoff energies Kinetic: 80 Ry, Charge density: 320 Ry
k-mesh 16ˆ16ˆ16 (unshifted)
Smearing Methfessel-Paxton (0.02 Ry) [68]
Phonon calculation 4ˆ4ˆ4 q-mesh (DFPT) [69]

EPC Calculation

Methodology Wannier interpolation (EPW) [70]
Wannier functions MLWFs [71] on 4ˆ4ˆ4 k-mesh
Projected orbitals Au-5d, H-1s
Fine grids Electron: 48ˆ48ˆ48, Phonon: 16ˆ16ˆ16
Smearing widths 90 meV (electron), 0.5 meV (phonon)
Eliashberg solver Anisotropic equations [70]
Matsubara cutoff ωc “ 1.7 eV (10ˆ max phonon freq)

Theory
EPC constant λ “ 1

Nq

ř

qν λqν “ 2
ş α2F pωq

ω dω

Spectral function α2F pωq “ 1
2Nq

ř

qν λqνωqνδpω ´ ωqνq

Coupling formula λqν “ 2
ℏNp0qNk

ř

nmk

|gnm
k,qν |2

ωqν
δpϵnkqδpϵmk`qq

Data availability

The crystal data are available from the Materials Project database via the web interface at
https://materialsproject.org or the API at https://api.materialsproject.org.

Code availability

All the data, code (https://github.com/xqh19970407/InvDesFlow-AL), and models will be
open-sourced after the paper is published. We rely on PyTorch (https://pytorch.org) for deep
model training. We use specialized tools for the Vienna Abinitio Simulation Package (https:
//www.vasp.at/).
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This supplementary document provides a detailed description of the proposed pre-trained model,
dataset statistics, hyperparameter value, and details of altermagnetic materials confirmed by elec-
tronic structure calculations.

1 DFT calculation results

Figures S.1–S.3 systematically present the structural and physical properties of a series of
InvDesFlow-AL discovered superconductors. In each figure, panels (a) and (b) show the crystal
structures of two representative materials: Ca2CuH6 and K2GaCuH6 in Figure S.1, K2CdCuH6 and
K2LiZnH6 in Figure S.2, and Na2GaCuH6 and Na2LiAgH6 in Figure S.3. Panels (c) and (d) of
each figure present the corresponding phonon spectra, phonon density of states (DOS), electronic
band structures, and electronic density of states, thereby providing a comprehensive view of both
the lattice dynamics and electronic properties of these compounds.

(a) (b)

(c)

(d)

Figure 6: (a) and (b) present the crystal structures of Ca2CuH6 and K2GaCuH6, respectively. (c) displays the
phonon spectrum, phonon density of states, electronic band structure, and density of states for Ca2CuH6. (d) shows
the corresponding phonon spectrum, phonon density of states, electronic band structure, and density of states for
K2GaCuH6.
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(a) (b)

(c)

(d)

Figure 7: (a) and (b) present the crystal structures of K2CdCuH6 and K2LiZnH6, respectively. (c) displays the
phonon spectrum, phonon density of states, electronic band structure, and density of states for K2CdCuH6. (d)
shows the corresponding phonon spectrum, phonon density of states, electronic band structure, and density of states
for K2LiZnH6.

2 Training Details and Hyperparameter Settings

Table 4 outlines the training configuration for the pre-trained crystal generation model. The
data pipeline utilizes CrystalNN-based graph construction with lattice scaling, and each structure
contains up to 20 atoms. The model adopts an EGNN-based decoder with 6 graph neural network
layers, a hidden dimension of 512, and SiLU activation. The training objective is governed by a
diffusion process with 1,000 steps and weighted losses for coordinates, lattice parameters, and atom
types. A neighborhood cutoff of 7.0 Å and a maximum of 20 neighbors per atom are used to define
atomic interactions. Optimization is performed using the Adam optimizer with a base learning
rate of 1 ˆ 10´4, and learning rate scheduling is managed via ReduceLROnPlateau. The model is
trained for 1,000 epochs on an NVIDIA GeForce RTX 4090 GPU. Full hyperparameter settings are
provided in Table 4.

Table 5 presents the training configuration for the SuperconGNN model, which is based on
spherical harmonics and designed for predicting superconducting transition temperatures. The
data processing utilizes a radius graph construction with a maximum radius of 5.0, and input edge
features are set to 2. The model consists of 128 scalar features, 10 vector features, and employs a
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(a) (b)

(c)

(d)

Figure 8: (a) and (b) present the crystal structures of Na2GaCuH6 and Na2LiAgH6, respectively. (c) displays the
phonon spectrum, phonon density of states, electronic band structure, and density of states for Na2GaCuH6. (d)
shows the corresponding phonon spectrum, phonon density of states, electronic band structure, and density of states
for Na2LiAgH6.

spherical harmonics expansion up to the second order. It uses 6 convolutional layers with ReLU
activation and incorporates third-order representations and residual connections. The optimization
is carried out with the Adam optimizer, a base learning rate of 1ˆ10´4, and a warmup linear decay
learning rate scheduler, where the warmup steps are 0.5 times the total number of steps. The model
is trained for 200 epochs with a mean squared error loss function on an NVIDIA GeForce RTX 4090
GPU. Detailed hyperparameter settings are provided in Table 5.

3 Other Visualizations

As shown in Figure 9, the ratio of unique chemical formulas generated by the InvDesFlow-AL pre-
trained generative model is reported for 1,000, 2,000, 4,000, 8,000, 16,000, 32,000, 64,000, 128,000,
and 256,000 materials. As the number of generated samples increases, the uniqueness ratio gradually
declines. Nevertheless, even when generating over 256,000 materials, the model still demonstrates
a high level of novelty and uniqueness. Figure 10 presents a statistical overview and specific case
analysis of the materials generated by InvDesFlow-AL. In panel (a), a histogram illustrates the
distribution of 1,598,551 generated materials with formation enthalpy (Ehull) less than 50 meV,
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Table 3: Comparison between predicted Tc values by SuperconGNN and those calculated by solving the anisotropic
Eliashberg equations.

Formula SuperconGNN Tc (K)

Li2AuH6 71 140
Na2LiAgH6 41 86
K2GaCuH6 48 68
Na2GaCuH6 22 42
K2LiZnH6 40 25
Ca2CuH6 42 16
K2CdCuH6 42 9

categorized by different Ehull intervals. This distribution highlights the thermodynamic stability
landscape of the generated compounds, with a significant number of candidates falling within low-
Ehull regions, suggesting good potential for synthesizability. Figure 11 (continued) showcases a case
study of Zn3Au4, one of the promising candidates generated. Panel (a) displays its binary phase
diagram, offering insight into its thermodynamic compatibility and phase coexistence with related
compounds. Panel (b) illustrates the crystal structure of Zn3Au4, revealing its atomic arrangement
and symmetry.
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Figure 9: The ratio of unique chemical formulas when the InvDesFlow-AL pre-trained generative model generates
1,000, 2,000, 4,000, 8,000, 16,000, 32,000, 64,000, 128,000, and 256,000 materials.
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Table 4: Training configuration details of pre-trained crystal generation mode.

Category Parameter Settings

Data Configuration
Graph construction CrystalNN method with lattice scaling
Max atoms per structure 20
Tolerance for structure matching 0.1
Train/Val/Test batch sizes 96/64/64
Parallel preprocessing workers 30

Model Architecture
Decoder type EGNN
Hidden dimension 512
Number of GNN layers 6
Activation function SiLU
Diffusion steps 1000
Cost weights (coord/lattice/type) 1.0/1.0/20.0
Neighborhood cutoff radius 7.0 Å
Max neighbors per atom 20

Optimization
Optimizer Adam
Base learning rate 1 ˆ 10´4

Learning rate scheduler ReduceLROnPlateau (factor=0.6, patience=30)
Minimum learning rate 1 ˆ 10´4

Training Protocol
Epochs 1000

Hardware & Logging
GPU device NVIDIA GeForce RTX 4090
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Figure 10: A histogram of the 1,598,551 materials with Ehull < 50 meV generated by InvDesFlow-AL, categorized
by different Ehull intervals.
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Table 5: Training configuration details of SuperconGNN.

Category Parameter Settings

Data Configuration
Graph construction Radius Graph
Maximum radius 5.0
Input edge features 2
Train/Val/Test batch sizes 32/32/32

Model Architecture
Model type SuperconGNN
Number of scalar features (ns) 128
Number of vector features (nv) 10
Maximum spherical harmonics order (sh_lmax) 2
Number of convolutional layers 6
Activation function ReLU
Use third-order representation True
Residual connections True

Optimization
Optimizer Adam
Base learning rate 1 ˆ 10´4

Learning rate scheduler Warmup Linear Decay
Warmup steps 0.5 ˆTotal Steps
Minimum learning rate 1 ˆ 10´4

Training Protocol
Number of epochs 200
Loss function Mean Squared Error

Hardware & Logging
GPU device NVIDIA GeForce RTX 4090

Crystal System: Tetragonal

Symbol: P4/mmm

International Number: 123

(a) (b)

Figure 11: (a) Binary phase diagram of Zn3Au4 (b) Crystal structure of Zn3Au4
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