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The discovery of high-temperature superconducting materials holds great significance for human
industry and daily life. In recent years, research on predicting superconducting transition tem-
peratures using artificial intelligence (AI) has gained popularity, with most of these tools claiming
to achieve remarkable accuracy. However, the lack of widely accepted benchmark datasets in this
field has severely hindered fair comparisons between different AI algorithms and impeded further
advancement of these methods. In this work, we present HTSC-2025, an ambient-pressure high-
temperature superconducting benchmark dataset. This comprehensive compilation encompasses
theoretically predicted superconducting materials discovered by theoretical physicists from 2023 to
2025 based on BCS superconductivity theory, including the renowned X2YH6 system, perovskite
MXH3 system, M3XH8 system, cage-like BCN-doped metal atomic systems derived from LaH10

structural evolution, and two-dimensional honeycomb-structured systems evolving from MgB2. In
addition, we note a range of approaches inspired by physical intuition for designing high-temperature
superconductors, such as hole doping, the introduction of light elements to form strong covalent
bonds, and the tuning of spin–orbit coupling. The HTSC-2025 benchmark has been open-sourced
at [https://github.com/xqh19970407/HTSC-2025] and will be continuously updated. This bench-
mark holds significant importance for accelerating the discovery of superconducting materials using
AI-based methods.
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Introduction. Superconducting materials, character-
ized by their exceptional property of zero electrical re-
sistance, have remained a central research focus in con-
densed matter physics since their discovery in 1911 (when
mercury exhibited superconductivity at 4.2 K [1]). As
evidenced by the arXiv [2] preprint repository, scholarly
publications containing the keyword “Superconductiv-
ity” have now surpassed 60,000 entries to date, under-
scoring the sustained scientific significance of this field.
High-temperature superconducting materials serve as key
components for energy-efficient transmission [3], mag-
netic resonance imaging (MRI) [4], nuclear magnetic res-
onance (NMR) [5], and fusion devices [6]. Therefore,
the discovery of new high-temperature, or even room-
temperature, superconductors holds great significance for
human production and daily life.

With technological advancements, AI has become an
essential tool for discovering superconducting materi-
als [7]. Kamal Choudhary et al. [8] performed large-
scale calculations on crystal materials databaszes based
on atomistic line graph neural network (ALIGNN) [9]
predictions and identified 105 dynamically stable super-
conductors with Tc > 5 K. Similarly, Miguel A. L. Mar-
ques et al. [10] applied this approach to hydrogen-based
systems and discovered 59 superconducting materials,
among which Li2CuH6 exhibits a superconducting tran-
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sition temperature of 86 K. InvDesFlow [11] explored
new chemical spaces through a crystal generative model,
demonstrating the feasibility of generative models in su-
perconducting material discovery. In its latest applica-
tion, InvDesFlow identified Li2AuH6 [12] with a super-
conducting transition temperature of 140 K, which sig-
nificantly exceeds the McMillan limit and even surpasses
the liquid nitrogen temperature regime.

Recently, numerous AI tools have been employed to
predict superconducting transition temperatures. The
ALIGNN model has achieved a mean absolute error
(MAE) of less than 2 K in its predictions [8]. The boot-
strapped ensemble of tempered equivariant graph neural
networks (BETE-NET) [13] predicts Tc using three mo-
ments (λ, ⟨ω⟩, and ω2) of the spectral function α2F (ω),
reducing the MAE to 2.1 K. The BANS [14] model, based
on a deep learning framework that incorporates a 3d
vision transformer (3D-ViT) architecture and attention
mechanisms, predicts Tc by analyzing electronic band
structures. For systems with Tc < 10 K, the prediction
error is less than 2 K, while for high-Tc superconductors,
the error remains below 25 K. The InvDesFlow-AL [15]
proposes the SuperconGNN model, which employs an
equivariant graph neural network based on spherical har-
monics to predict superconducting transition tempera-
tures. This framework achieves a prediction accuracy
of less than 2 K for conventional BCS superconductors
as well. However, these models lack a unified standard
for evaluating their performance. Developing standard-
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ized benchmarks is crucial for the advancement of algo-
rithms. For example, in protein structure prediction, the
PoseBusters benchmark introduced by AlphaFold3 [16]
has been widely adopted for assessing various AI tools.

In this work, we compile superconducting materials
newly reported during the 2024–2025 period, includ-
ing X2YH6 systems, perovskite-type MXH3 structures,
fluorite-type M3XH8 compounds, cage-like BCN-based
materials evolved from the LaH10 structure with metal
atom doping, and two-dimensional honeycomb structures
derived from MgB2. Additionally, we highlight several
approaches based on physical intuition for the inverse
design of high-Tc superconductors. A retrospective anal-
ysis of these strategies offers valuable insights for future
efforts in discovering materials with even higher super-
conducting transition temperatures.

Methods. In this section, we present the establishment
process of HTSC-2025, the testing methodology for AI
algorithms on this benchmark, and the validation proce-
dures for AI-discovered novel materials.

As illustrated in Figure 1(a), our construction pro-
cess initiates with an extensive literature review of the-
oretically predicted superconductors. Considering the
essential requirements of timeliness, high application
value, and rapid validation for benchmark systems, we
specifically focus on high-temperature superconducting
materials discovered since 2024 that exhibit ambient-
pressure superconductivity. To enable efficient verifica-
tion of AI performance, we prioritize materials identified
through BCS superconducting mechanisms, as this selec-
tion ensures that AI predictions can be rapidly validated
through density functional theory (DFT) calculations.
Subsequently, we systematically collect crystal struc-
ture information (CIF files) and corresponding theoreti-
cally predicted superconducting transition temperatures
through multiple approaches: expert manual construc-
tion, automated script replacement, and direct commu-
nication with original authors via email. Finally, through
systematic literature analysis, we categorize these mate-
rials into specific crystalline systems: X2YH6-type struc-
tures, perovskite MXH3-type structures, M3XH8-type
structures, LaH8-type clathrates, MgB2-like 2D honey-
comb lattices, and other structures, thereby establishing
a structured framework for subsequent AI performance
evaluation.

As illustrated in Figure 1(b), prior to evaluating
AI models on the HTSC-2025 benchmark, the training
dataset must rigorously exclude these materials to pre-
vent data leakage. The AI models then convert crys-
tal data into graph representations or other structured
formats for input, subsequently predicting the super-
conducting Tc of the materials. To quantify predic-
tive performance, we calculate the mean absolute error
(MAE) between model predictions and DFT-computed
results. For comprehensive evaluation, the test set
is partitioned according to the aforementioned crys-
talline systems (X2YH6, MXH3, etc.), enabling both
system-specific MAE calculations and total MAE. Fur-

thermore, given the greater application value of high-
temperature superconductors compared to their low-
temperature counterparts, we introduce an additional
evaluation metric: the prediction success rate across dif-
ferent critical temperature intervals. This stratified anal-
ysis aims to quantify the performance of AI in identifying
materials within specific Tc ranges, with particular focus
on technologically critical regimes such as the McMillan
limit and the liquid nitrogen temperature range.

As shown in Figure 1 (c), the performance of AI mod-
els is often further validated by their ability to discover
new high-temperature superconducting materials. For
AI-recommended candidate superconductors, the BCS
theory provides a convenient framework for verification
using first-principles methods, such as those implemented
in VASP [17] and Quantum Espresso [18]. According
to BCS theory, superconductivity arises from the forma-
tion of cooper pairs—electron pairs bound via phonon-
mediated interactions that overcome coulomb repulsion.
The collective condensation of these cooper pairs near the
fermi surface opens a superconducting energy gap, result-
ing in the characteristic zero-resistance state. To verify
whether a candidate material follows the BCS supercon-
ducting mechanism, a systematic first-principles compu-
tational protocol is employed, including crystal structure
optimization, phonon spectrum analysis, and electron-
phonon coupling calculations.

Results. In this section, we analyze the ambient-
pressure superconducting materials and their mecha-
nisms within HTCS-2025. Notably, the HTCS-2025 ex-
cludes comprehensive literature-reported materials, re-
taining only representative candidates. This selective cu-
ration enhances AI model training by ensuring exposure
to related superconducting materials (outside HTCS-
2025), thereby improving generalization performance.

Figure 2(a) presents a histogram of the Tc distribu-
tion, where the vertical axis indicates the number of ma-
terials within each Tc interval. The HTCS-2025 dataset
contains a total of 140 samples, with an average Tc of
27.3 K. Notably, more than half of the crystals exhibit
a Tc exceeding 20 K, highlighting the dataset’s focus on
evaluating materials with relatively high Tc values. Fig-
ure 2(b) shows a heatmap overlaid on the periodic table,
in which the color intensity represents the frequency of
each element appearing in HTCS-2025. Hydrogen is the
most frequently occurring element, present in 79 com-
pounds, underscoring the significant potential of hydrides
in achieving high-temperature superconductivity. Fig-
ure 2(c) illustrates representative materials from different
material systems. Table I presents the average Tc, max-
imum Tc, corresponding chemical formula, space group,
and the number of materials for each material system.

As illustrated in Figure 2 (c), the discovery of Mg2IrH6

(Tc = 160 K) [19] has inspired researchers to conduct
more detailed investigations into X2YH6 systems. Many
systems with superconducting Tc exceeding 20 K—and
even reaching up to 70 K—have been discovered. No-
table examples include Li2CuH6 (Tc = 86 K), Mg2PtH6
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FIG. 1. Construction and Application of the HTSC-2025 Benchmark. (a) Workflow of HTSC-2025 benchmark dataset con-
struction, starting from a literature review of theoretically predicted ambient-pressure high-Tc superconductors (since 2024),
focusing on BCS-type candidates for rapid DFT validation. Crystal structures and Tc values are collected via expert curation,
scripts, and author correspondence, and categorized into representative structural types for AI evaluation. (b) Evaluation
pipeline for AI models on HTSC-2025: Training data exclusion prevents leakage,Tc prediction from crystal structures, MAE
analysis (system-specific/overall), success rates across Tc intervals highlight high-Tc identification. (c) First-principles calcu-
lations for validating AI-predicted new superconducting materials, including crystal structure optimization, phonon spectrum
evaluation, and electron-phonon coupling analysis.

(Tc = 78 K), Mg2PdH6 (Tc = 63 K), Mg2RhH6 (Tc = 53
K) [10], as well as the recently AI-discovered Li2AuH6 (Tc

= 140 K) [12]. The superconducting mechanisms of these
structures appear to be similar. The electronic structure
of X2YH6 compounds reveals the presence of van hove
singularities near the fermi level, which may contribute
to their high Tc. In addition, the significant contribution
of hydrogen 1s orbitals to the electronic density of states
enables strong coupling between high-frequency phonon
modes and electrons near the fermi level, thereby enhanc-
ing the overall electron–phonon coupling strength.

Inspired by studies on X2YH6 compounds, fluorite-
type M3XH8 compounds (Figure 2 (c)) with the Pm3̄m
space group, where M = Li, Na, Mg, Al, K, Ca, Ga, Rb,
Sr, and In, and X denotes 3d, 4d, or 5d transition met-
als, have also attracted considerable attention. A total
of 29 dynamically stable compounds have been identified.
The band structure of Mg3OsH8 (Tc = 73 K) [20] shows
three bands crossing the fermi level, indicating its metal-
lic nature. The electronic density of states of hydrogen
is uniformly distributed near the fermi level, facilitat-
ing electron-phonon coupling. Furthermore, the signifi-
cant phonon density of states contribution from hydro-

gen atoms in the high-frequency phonon region further
enhances this coupling.

The high-throughput computational discovery of
ZnHCr3 (Tc = 30 K), ZnHAl3 (Tc = 80 K) [21], and
MgHCu3 (Tc = 42 K) [22] has sparked increasing in-
terest in the superconducting properties of cubic per-
ovskite MXH3 systems [23]. Miguel A. L. Marques et
al. have also identified a series of superconducting mate-
rials [10, 24, 25] within the MXH3 family, such as KInH3

(Tc = 73 K), KAlH3 (Tc = 52 K), AlHgH3 (Tc = 28 K),
PbHgH3 (Tc = 25 K), KCaH3 (Tc = 23 K), and PbOsH3

(Tc = 23 K). Recently, Bin Li et al. systematically ex-
plored perovskite hydrides by selecting alkali and post-
transition metals as the M-site elements and 3d, 4d, and
5d transition metals as the X-site elements. Through
high-throughput calculations, they identified 17 dynam-
ically stable perovskite hydrides [26]. Notably, SrAuH3

(Tc = 132 K) and SrZnH3 (Tc = 107 K) exhibit excep-
tionally high superconducting transition temperatures,
highlighting the great potential of this family of mate-
rials for achieving high-Tc superconductivity. Multiple
electronic bands cross the fermi level. The 5d orbitals of
Au contribute significantly near the fermi level, forming a
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FIG. 2. Statistics and elemental composition of the HTCS-2025 Benchmark. (a) Histogram of superconducting transition
temperatures (Tc) for 140 materials in HTCS-2025, with an average Tc of 27.3 K. (b) Elemental heatmap on the periodic table
based on occurrence frequency; hydrogen appears most frequently, highlighting the prominence of hydrides. (c) Representative
high-Tc materials from different material systems.

pronounced van hove singularity, which may enhance the
density of states at the fermi level and thereby promote
superconductivity. More recently, additional supercon-
ducting materials within this system have continued to
be discovered [27], such as KScH3 (Tc = 40 K), RbScH3

(Tc = 32 K), and CsScH3 (Tc = 18 K).

The dynamical stability of cage-like hydrides such as
CaH6 [28, 29], YH6 [30, 31], CeH10 [32], and LaH10 [33,
34] requires high-pressure conditions, which limits their
synthesis and practical applications. However, the con-
ventional superconducting mechanisms observed in these
materials have inspired physicists to explore the possi-
bility of achieving high-temperature superconductivity
within BCS-type materials. Given that B and C are
the lightest elements capable of forming strong covalent
bonds, and considering the compositional diversity of
guest metal atoms, significant progress has been made
in substituting hydrogen in cage-like hydride structures
with these elements. The hexagonal cage-structured
XB8C compounds (X = Ca, Sr, Ba) exhibit super-
conductivity with Tc=77.1, 64.4, and 53.2 K, respec-
tively [35]. First-principles calculations reveal a metal-
lic ground state characterized by multiple bands crossing
the fermi level. The coexistence of flat and dispersive
bands near fermi level leads to an enhanced electron-
phonon coupling strength, providing a mechanism for the
observed elevated Tc values. Phonon spectrum calcula-
tions show that the electron-phonon coupling is mainly

concentrated in the high-frequency optical modes.

La(BN)5 and Y(BN)5 [36] adopt cage-like crystal
structures analogous to that of LaH10, in which boron
and nitrogen atoms substitute for hydrogen to reduce
the high pressure typically required for maintaining dy-
namical stability. Their superconducting transition tem-
peratures are 69 K and 59 K, respectively. A similar
structure, AlB6N6, exhibits a predicted Tc of 47 K [37].
Quaternary superconductors, including RbBaB6C6 (Tc

= 68 K) [38] and KPbB6C6 (Tc = 88 K) [39], exhibit
crystal structures primarily composed of a covalent B–C
framework, with metal atoms doped as guest species.

By doping metals into the boron-nitride cage (BN)5,
four stable superconductors M(BN)5 (M = Na, Al, In,
Tl) are obtained, with corresponding Tc of 8 K, 22 K, 15
K, and 15 K, respectively. The electronic band structure
of Al(BN)5 [40] reveals multiple bands crossing the fermi
level, giving rise to both electron-type and hole-type
fermi surfaces. The electronic states at the fermi sur-
face are primarily derived from the p orbitals of B and N
atoms, as well as the p orbitals of the Al atom, which is fa-
vorable for Cooper pair formation and enhances electron-
phonon coupling. Atomic doping is an effective approach
to enhance the superconducting transition temperature.
The transition from insulator to metal and the induc-
tion of high-temperature superconductivity are achieved
by doping guest atoms (such as Li and Mg) into zinc
blende-type structures (XY4Z4, where Y4Z4 = B4N4,
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Si4C4, B4P4) [41]. Notably, LiB4N4 and MgB4P4 ex-
hibit superconducting transition temperatures as high as
67 K and 45 K, respectively, surpassing that of the con-
ventional high-temperature superconductor MgB2. The
elevated Tc values in these compounds are attributed to
a high electronic density of states at the fermi level and
the softening of low-frequency acoustic phonon modes,
which significantly enhance the electron-phonon coupling
strength. By introducing potassium atoms into the metal
borohydride Ca(BH4)2, strong electron-phonon coupling
between B–H σ molecular orbitals and bond-stretching
phonon modes can be achieved. At a doping concentra-
tion of 0.10, the transition temperature reaches a maxi-
mum value of 130 K [42].

In addition to the material systems mentioned above,
we also observe progress in physics-inspired strategies for
discovering high-temperature superconductors, such as
hole doping, introducing light elements to form strong co-
valent bonds, and tuning spin–orbit coupling. The com-
pound (BN)5 exhibits insulating behavior in its pristine
state. However, hole doping induces a downward shift
of the fermi level, leading to the metallization of the sp3
hybridized σ-bonding band. This electronic transition
is accompanied by the emergence of high-temperature
superconductivity with a Tc reaching 96 K [43]. With
increasing hole concentration, although the overall elec-
tronic structure remains largely unchanged, strong cou-
pling arises between mid-frequency optical phonon modes
and the σ-electrons, contributing significantly to the to-
tal electron–phonon coupling.

At ambient pressure, MgB2C2 and hole-doped NaBC
exhibit potential for high-temperature superconductiv-
ity [44]. The hole concentration can be tuned via thermal
deintercalation methods. For instance, low-temperature
sodium deintercalation in NaBC effectively suppresses
the formation of defects in BC layers and preserves strong
electron-phonon coupling. The deintercalated layered
structures (e.g., Na3/4BC and Mg2/3B2C2) remain sta-
ble under kinetic constraints, and the planarity of the BC
layers is crucial to superconductivity. Excessive buckling,
such as in Na2/3BC where davg = 0.12 Å, disrupts the
coupling between σ-band electrons and high-frequency
bond-stretching phonons (6̃5 meV), significantly reduc-
ing the Tc. These hole-doped materials exhibit strong
electron-phonon coupling strengths (λ ∼ 0.95–1.32) and
a characteristic two-gap superconducting behavior simi-
lar to MgB2, with Tc values ranging from 43 K to 88 K,
the highest being observed in Na7/8BC.

The two-dimensional honeycomb structure KB2C2 (Tc

= 153 K) [45] is designed based on the AlB2-type struc-
ture of MgB2 [46]. By introducing carbon atoms to form
strong covalent B-C σ bonds, a strong coupling between
electrons and high-frequency in-plane phonon vibrations
is achieved. Its multigap nature (coexistence of σ and π
states) further facilitates cooper pair formation. Biaxial
tensile strain induces phonon mode softening and signif-
icantly enhances the electron-phonon coupling constant
λ, far exceeding that of conventional two-dimensional su-

perconductors. Similarly, by replacing the B–B surface
layer of MgB2 with a B–C layer, the two-dimensional
material Mg2B4C2 exhibits high-temperature supercon-
ductivity, with a predicted Tc estimated to be around
47–48 K [47].

At ambient pressure, I4mm-Mg2BN, Cm-Mg2BN,
Cmmm-MgB2N, and R3m-Mg2BN exhibit superconduct-
ing transition temperatures Tc of 31 K, 19 K, 11 K, and
4.5 K [48], respectively. The low-frequency lattice vibra-
tions primarily contributed by Mg and B atoms play a
dominant role in electron-phonon coupling, serving as a
key factor for superconductivity. Among these phases,
I4mm-Mg2BN exhibits the strongest EPC (λ = 1.33),
corresponding to its highest Tc (31 K), whereas R3m-
Mg2BN shows the weakest EPC (λ = 0.38).

The kagome metals Rh3M2S2 (M = Pb, In, Tl) ex-
hibit the coexistence of superconductivity and topolog-
ical states [49]. These materials are weak superconduc-
tors, with superconducting transition temperatures Tc of
1.03 K (Pb), 2.31 K (In), and 5.39 K (Tl), respectively.
Notably, spin-orbit coupling has a significant influence
on Tc.

Discussion and Conclusion. Most of AI-based studies
on superconducting Tc prediction have claimed signifi-
cant improvements in accuracy [8, 13–15]. However, the
field still lacks a unified, open, and extensible benchmark,
which hinders fair comparisons between models and lim-
its further development. In this work, we propose HTSC-
2025, a benchmark dataset for high-Tc superconductors
under ambient pressure. It features timely coverage (ma-
terials predicted from 2023 to May 2025), practical value
(ambient pressure and high Tc focus), quick verifiabil-
ity (compatible with BCS theory and DFT), and broad
scope (including X2YH6, perovskite-type MXH3, M3XH8

systems, etc.). We also review a series of physically in-
spired design strategies, highlighting that hole doping,
the introduction of light atoms forming strong covalent
bonds, and spin-orbit coupling engineering can enhance
Tc. HTSC-2025 is publicly released and will be continu-
ously maintained. It provides a reproducible and quan-
titative basis for cross-model evaluation and offers phys-
ically interpretable templates to support inverse design
and the discovery of new high-Tc superconductors.

Recently, AI has driven significant progress in the dis-
covery of high-pressure superconductors. For example,
Jiang et al. [50] developed a Tc prediction model under
high pressure and identified 14 new clathrate hydride
prototypes. Among them, 11 ternary clathrate struc-
tures were predicted to exhibit Tc values above 250 K
at 300 GPa, with Li2NaH17 and ThY2H24 approaching
room-temperature Tc (297 K and 303 K, respectively)
at lower pressures. Wang et al. [51] also identified 144
high-pressure superconductors using AI tools. However,
HTSC-2025 does not include these materials. This re-
flects a balance between practical and academic value:
while high-pressure superconductors offer insights into
achieving room-temperature Tc, their extreme pressure
conditions limit real-world applications. HTSC-2025 also
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TABLE I. Crystalline materials included in the HTSC-2025 benchmark.

Material Class Average Tc (K) Max Tc Formula Space Group Max Tc (K) Number

X2YH6 55.4 Mg2IrH6 Fm3̄m 160 19

LaH10 53.0 KPbB6C6 Pm3̄ 88 12

X2YMH6 35.5 Na2LiAgH6 Fm3̄m 86 23

MXH3 35.3 SrAuH3 Pm3̄m 132 15

M3XH8 20.40 Mg3OsH8 Pm3̄m 73 18

Others 7.9 MgB2 P63/mmm 39.0 53

Total 27.3 Mg2IrH6 Fm3̄m 160 140

excludes unconventional superconductors, as the lack of
a unified theoretical framework makes it difficult to verify
AI-predicted candidates or assess benchmark quality. We
hope to extend HTSC-2025 to these domains as scientific
understanding advances.

In the future, we will continuously expand and up-
date the HTSC-2025 benchmark, develop related AI algo-
rithms, and conduct extensive evaluations on this bench-
mark to facilitate the discovery of high-temperature su-
perconductors. In addition, we will also explore physics-
inspired approaches to discover new high-Tc supercon-
ducting materials.

Open Data and Code Availability. To support the

discovery of superconducting materials and the evalu-
ation of AI tools, we open-source this benchmark at
[https://github.com/xqh19970407/HTSC-2025].
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