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Abstract

Symbolic regression plays a crucial role in modern scientific research thanks to its capability of
discovering concise and interpretable mathematical expressions from data. A grand challenge lies
in the arduous search for parsimonious and generalizable mathematical formulas, in an infinite
search space, while intending to fit the training data. Existing algorithms have faced a critical
bottleneck of accuracy and efficiency over a decade when handling problems of complexity, which
essentially hinders the pace of applying symbolic regression for scientific exploration across
interdisciplinary domains. To this end, we introduce a parallelized tree search (PTS) model
to efficiently distill generic mathematical expressions from limited data. Through a series of
extensive experiments, we demonstrate the superior accuracy and efficiency of PTS for equation
discovery, which greatly outperforms the state-of-the-art baseline models on over 80 synthetic
and experimental datasets (e.g., lifting its performance by up to 99% accuracy improvement and
one-order of magnitude speed up). PTS represents a key advance in accurate and efficient data-
driven discovery of symbolic, interpretable models (e.g., underlying physical laws) and marks a
pivotal transition towards scalable symbolic learning.

Introduction

Over the centuries, scientific discovery has never departed from the use of interpretable math-
ematical equations or analytical models to describe complex phenomena in nature. Pioneering
scientists discovered that behind many sets of empirical data in the real world lay succinct gov-
erning equations or physical laws. A famous example of this is Kepler’s discovery of three laws of
planetary motion using Tycho Brahe’s observational data, which laid the foundation for Newton’s
discovery of universal gravitation. Automated extraction of these natural laws from data, as a class
of typical symbolic regression (SR) problems [1], stands at the forefront of data-driven scientific ex-
ploration in natural sciences and engineering applications [2–10]. However, uncovering parsimonious
closed-form equations that govern complex systems (e.g., nonlinear dynamics) is always challeng-
ing. Data revolution, rooted in advanced machine intelligence, has offered an alternative to tackle
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this issue. Although well-known regression methods [11] have been widely applied to identify the
coefficients of given equations in fixed forms, they are no longer effective for natural systems where
our prior knowledge of the explicit model structure is vague.

Attempts have been made to develop evolutionary computational methods to uncover symbolic
formulas that best interpret data. Unlike traditional linear/nonlinear regression methods which fit
parameters to equations of a given form, SR allows free combination of mathematical operators to
obtain an open-ended solution and thus makes it possible to automatically infer an analytical model
from data (e.g., by simultaneously discovering both the form of equations and controlling parame-
ters). Monte Carlo sampling [12] and evolutionary algorithms, such as genetic programming (GP),
have been widely applied to distill mathematical expressions and governing laws that best fit avail-
able measurement data for nonlinear dynamical systems [1, 13–18]. However, this type of approach
is known to scale poorly to problem’s dimensionality, exhibits sensitivity to hyperparameters, and
generally suffers from extensive computational cost in an extensively large search space.

Another remarkable breakthrough leverages sparse regression, in a restricted search space based
on a pre-defined library of candidate functions, to select an optimal analytical model [19]. Such an
approach quickly became one of the state-of-art methods and kindled significant enthusiasm in data-
driven discovery of ordinary or partial differential equations [9, 20–26] as well as state estimation
[27]. However, the success of this sparsity-promoting approach relies on a properly defined candidate
function library that operates on a fit-complexity Pareto front. It is further restricted by the fact
that the linear combination of candidate functions is usually insufficient to express complicated
mathematical formulas. Moreover, when the library size is overly massive, this approach generally
fails to hold the sparsity constraint.

Deep learning has also been employed to uncover generic symbolic formulas from data, e.g.,
recurrent neural networks with risk-seeking policy gradient formulation [28], variational grammar
autoencoders [29], neural-network-based graph modularity [30, 31], pre-trained transformers [32–
34], etc. Another notable work has leveraged symbolic neural networks to distill physical laws of
dynamical systems [35, 36], where commonly seen mathematical operators are employed as symbolic
activation functions to establish intricate formulas via weight pruning. Nevertheless, this framework
is primarily built on empirical pruning of the weights, thus exhibits sensitivity to user-defined
thresholds and may fall short to produce parsimonious equations for noisy and scarce data.

Very recently, Monte Carlo tree search (MCTS) [37, 38], which gained acclaim for powering
the decision-making algorithms in AlphaGo [39], AlphaZero [40] and AlphaTensor [41], has shown
a great potential in navigating the expansive search space inherent in SR [42]. This method uses
stochastic simulations to meticulously evaluate the merit of each node in the search tree and has
empowered several SR techniques [43, 44]. However, the conventional application of MCTS maps
each node to a unique expression, which tends to impede the rapid recovery of accurate symbolic
representations. This narrow mapping may limit the strategy’s ability to efficiently parse through
the complex space of potential expressions, thus presenting a bottleneck in the quest for swiftly
uncovering underlying mathematical equations.

SR involves evaluating a large number of complex symbolic expressions composed of various
operators, variables, and constants. The operators and variables are discrete, while the value of the
coefficients is continuous. The NP-hardness of a typical SR process, noted by many scholars [28, 30,
45], has been formally established [46]. This nature makes the algorithm need to traverse various
possible combinations, resulting in a huge and even infinite search space and thus facing the problem
of combinatorial explosion. Unfortunately, all the existing SR methods evaluate each candidate
expression independently, leading to significantly low computational efficiency, and although some
works considered caching evaluated expressions to prevent recomputation, they do not reuse these
results as subtree values for evaluating deeper expressions. Consequently, the majority of these
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methods either rely on meta-heuristic search strategies, narrow down the search space based on
specific assumptions, or incorporate pre-trained models to discover relatively complex expressions,
which make the algorithms prone to producing specious results (e.g., local optima). Therefore,
the efficiency of candidate expression evaluation is of paramount importance. By enhancing the
efficiency of candidate expression evaluation, it becomes possible to design new SR algorithms that
are less reliant on particular optimization methods, while increasing the likelihood of directly finding
the global optima in the grand search space. Thus, we can improve the SR accuracy (in particular,
the symbolic recovery rate) and, meanwhile, drastically reduce the computational time.

To this end, we propose a novel parallelized tree search (PTS) model to automatically distill
symbolic expressions from limited data. Such a model is capable of efficiently evaluating potential
expressions, thereby facilitating the exploration of hundreds of millions of candidate expressions
simultaneously in parallel within a mere few seconds. In particular, we propose a parallel symbolic
regression network (PSRN) as the cornerstone search engine, which (1) automatically captures
common subtrees of different math expression trees for shared evaluation that avoids redundant
computations, and (2) capitalizes on graphics processing unit (GPU) based parallel search that
results in a notable performance boost. It is notable that, in a standard SR process for equation
discovery, many candidate expressions share common subtrees, which leads to repeatedly redun-
dant evaluations and, consequently, superfluous computation. To address this issue, we propose a
strategy to automatically cache common subtrees for shared evaluation and reuse, effectively cir-
cumventing significantly redundant computation. We further execute PTS on a GPU to perform
large-scale evaluation of candidate expressions in parallel, thereby augmenting the efficiency of the
evaluation process. To our astonishment, the synergy of these two techniques could yield up to four
orders of magnitude efficiency improvement in the context of expression evaluation. In addition, to
expedite the convergence and enhance the capacity of PSRN for exploration and identification of
more intricate expressions, we amalgamate it with the MCTS strategy which identifies a set of ad-
missible base expressions as tokenized input. The remarkable efficacy and efficiency of the proposed
PTS model have been demonstrated on a variety of benchmark and lab test datasets. The results
show that PTS surpasses evidently several existing baseline methods, achieving higher symbolic
recovery rate and efficiency.

Results

Symbolic expression discovery with parallel evaluation

SR aims to discover concise, precise, and human-interpretable mathematical expressions hidden
within data, offering significant value in aiding scientists to decipher the underlying meanings of
unknown systems. Mathematically speaking, SR can be cast as the process of finding an expression
f : Rm Ñ R that satisfies y “ fpXq given data D “ pX,yq, where X P Rnˆm, y P Rnˆ1, n
represents the number of data samples and m the number of independent variables. Here, the
form of f is usually constructed by a finite set of math symbols based on a given token library
O “ t`,´,ˆ,˜, sinp¨q, expp¨q, ..., const.u. To make the underlying expression interpretable and
parsimonious, SR algorithms are required to swiftly produce a Pareto front, balancing the error
and complexity in underlying expressions. In other words, there is a need for a new SR algorithm
that is both computationally efficient and exhibits a high symbolic recovery rate (e.g., also referred
as accuracy; see Supplementary Note 2.4 for specific definition). However, existing SR algorithms
are faced with significant bottlenecks associated with low efficiency and poor accuracy in finding
complex mathematical expressions. To this end, we propose a novel parallelized tree search (PTS)
model, as shown in Fig. 1, to automatically discover mathematical expressions from limited data.
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Fig. 1: Overview of the proposed PTS model. a, Monte Carlo tree search (MCTS) for automatic discovery of
admissible tokenized input. Each node in the MCTS model represents a base expression set denoted as si. The search
begins from the root node and iteratively performs selection, expansion, simulation, and backpropagation steps until
a stopping condition is met or the specified number of epochs is completed. Once a terminal node is reached, the
corresponding base expression set sT is fed into PSRN regressor for expression discovering. The obtained reward r is
then used to guide the MCTS backpropagation. b, Schematic of PSRN regressor for discovering optimal expressions
from data. The base expression set sT from terminal nodes, along with optionally sampled token constant values,
is fed into PSRN for forward computation. After evaluating the error of large-scale candidate expressions, PSRN
provides the optimal (or top-k) candidate expressions denoted as F̃ . Subsequently, the least squares method is
employed for the identification and fine-tuning of the coefficients, resulting in adjusted expressions F˚, which are
then utilized for updating the Pareto front as computing the complexity and reward. c, Forward computation in
PSRN. The base expression set and sampled constants, along with the corresponding data tensor X, are fed into
the network. The network comprises multiple Symbol Layers (e.g., typically three, but only two are shown for
simplicity). Each layer provides all possible subtree values resulting from one-operator computations among all input
expressions. This process can be efficiently parallelized on a GPU for rapid computation. Upon completion of PSRN’s
forward computation, a myriad of candidate expressions F̂ (e.g., up to hundreds of millions) corresponding to the base
expression set sT , along with their associated error tensors on the given data, are generated. Then, the expression with
the minimal error (or top-k expressions) will be selected. d, Schematic of common subtree identification. Expressions
sharing common subtrees, such as sinpx1 ` x2q and exppx1 ` x2q, leverage identical subtree computation outcomes.
This approach circumvents extensive redundant calculations, thereby increasing the efficiency of SR. e, Schematic of
duplicate removal mask (DR Mask). We designed the DR Mask layer to mask the output tensor of the penultimate
layer in PSRN, thereby excluding subtree expressions that are symbolically equivalent. This significantly reduces
PSRN’s usage of GPU memory. f, Estimation and fine-tuning of constant coefficients. The least squares method is
used to fine-tune the coefficients of the preliminary expressions discovered by PSRN using the complete data set.
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In particular, we develop a PSRN regressor as the core search engine, depicted in Fig. 1b–c, to
enhance significantly the efficiency of candidate expression evaluation. The architecture of PSRN
is designed parallelism-friendly, thereby enabling rapid GPU-based parallel computation (see Fig.
1c). The PSRN is empowered by automatically identifying and reusing intermediate calculation of
common subtrees (see Fig. 1d).

To further bolster the model’s discovery capability, we also integrate MCTS to locate a set of
admissible base expressions as token input to PSRN for exploring deeper expressions (see Fig. 1a).
Specifically, the PTS model revolves around PSRN continually activating MCTS iterations, starting
with a root node with several available independent variables. During these iterations, the set of
base expressions within each node are expanded by progressively incorporating more complex base
expressions. When the search reaches a terminal node, the token constants are sampled and, together
with the base expression set, are input into PSRN for evaluation and search of optimal symbolic
expressions (see Fig. 1b). Typically, PSRN can rapidly (e.g., within a matter of seconds) identify
the expression with the smallest error or a few best candidates from hundreds of millions of symbolic
expressions. This represents a significant speed improvement compared to existing approaches which
independently evaluate candidate expressions. Additionally, we design a duplicate removal mask
step (e.g., DR Mask) for PSRN to reduce memory usage (see Fig. 1e). In the PSRN regressor, the
coefficients of the most promising expressions are identified and fine-tuned based on least squares
estimation (see Fig. 1f). The rewards on the given data are computed and then back-propagated
for subsequent MCTS searches. As the search progresses, the Pareto front representing the optimal
set of expressions is continuously updated to report the final result. Further details of the proposed
model are provided in Methods.

Symbolic regression benchmarks

We firstly demonstrate the efficacy of PTS on recovering specified mathematical formulas given
multiple benchmark problem sets (including Nguyen [47], Nguyen-c [48], R [49], Livermore [45] and
Feynman [30], as described in Supplementary Note 2.1), commonly used to evaluate the performance
of SR algorithms. Each SR puzzle consists of a ground truth equation, a set of available math oper-
ators, and a corresponding dataset. These benchmark data sets contains various math expressions,
e.g., x3 ` x2 ` x (Nguyen-1), 3.39x3 ` 2.12x2 ` 1.78x (Nguyen-1c), px ` 1q3{px2 ´ x ` 1q (R-1),
1{3`x`sin px2q (Livermore-1), x41´x31`x21´x2 (Livermore-5), and x1x2x3 log px5{x4q (Feynman-9),
which are listed in detail in Supplementary Tables S.1–S.2 . Our objective is to uncover the Pareto
front of optimal mathematical expressions that balance the equation complexity and error. The
performance of PTS is compared with four baseline methods, e.g., symbolic physics learner (SPL)
[42], neural-guided genetic programming (NGGP) [45], deep generative symbolic regression (DGSR)
[34] and PySR [50]. For the Nguyen-c dataset, each model is run for at least 20 independent trials
with different random seeds, while for all other puzzles, 100 distinct random seeds are utilized. We
mark the successful case if the ground truth equation lies in the discovered Pareto front set.

The SR results of different models, in terms of the symbolic recovery rate and computational
time, are depicted in Fig. 2. It can be seen that the proposed PTS method evidently outperforms
the baseline methods for all the benchmark problem sets in terms of recovery rate, meanwhile
maintaining the highest efficiency (e.g., expending the minimal computation time) that achieves
up to two orders of magnitude speedup. The detailed results for each SR problem set are listed in
Supplementary Tables S.7–S.12. An intriguing finding is that PTS achieves an impressive symbolic
recovery rate of 99% on the R benchmark expressions, while the baseline models almost fail (e.g.,
recovery rate < 2%). We attribute this to the mathematical nature of the R benchmark expressions,
which are all rational fractions like px ` 1q3{px2 ´ x ` 1q (R-1). Confined to the sampling interval
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Fig. 2: Performance of various models on symbolic regression benchmarks. We employ two evaluation
metrics, namely, symbolic recovery rate and average runtime, to assess the performance of each algorithm. Our
PTS approach achieves the highest recovery rate across various benchmark problem sets, meanwhile expending the
minimal computation time, compared to the baseline methods (e.g., SPL [42], NGGP [45], DGSR [34] and PySR
[50]). This highlights the substantial superiority of PTS. Note that the star marks the mean value over each problem
set.

x P r´1, 1s, the properties of the R expressions bear a high resemblance to polynomial functions,
resulting in intractable local minima that essentially lead to the failure of NGGP and DGSR.
This issue can be alleviated given a larger interval, e.g., x P r´10, 10s, as illustrated in the R˚

dataset (see Supplementary Tables S.10). Notably, the performance of DGSR based on pre-trained
language models stems from the prevalence of polynomial expressions in the pre-training corpora,
while NGGP collapses on account of its limited search capacity in an enormously large search space.
In contrast, owing to the direct and parallel evaluation of multi-million expression structures, PTS
possesses the capability of accurately and efficiently recovering complex expressions.

Discovery of chaotic dynamics

Nonlinear dynamics is ubiquitous in nature and typically governed by a set of differential equa-
tions. Distilling such governing equations from limited observed data plays a crucial role in better
understanding the fundamental mechanism of dynamics. Here, we test the proposed PTS model
to discover a series of multi-dimensional autonomous chaotic dynamics (e.g., Lorenz attractor [51]
and its variants [52]). The synthetic datasets of these chaotic dynamical systems are described in
Supplementary Note 2.2. It is noted that we only measure the noisy trajectories (e.g., with 1%
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Fig. 3: Data-driven discovery of nonlinear chaotic dynamics by different models including PTS, BMS,
PySR and NGGP. A large number of operators (e.g., `,ˆ,´,˜, sin, cos, exp, cosh, tanh, abs, sign, etc.) are used to
simulate the situation in which scientists explore unknown systems in the real world with no prior knowledge. Given
the same budget of computational time, PTS has a higher probability of finding the true governing equations among
a nearly infinite number of possible expression structures. Each model’s runtime is capped at around 100 seconds
by limiting the number of iterations. a, Examples of predicted trajectories (e.g., solid lines) by different models
compared with the ground truth (e.g., dashed lines). b, Average recovery rates of SR algorithms on 16 nonlinear
chaotic dynamics datasets. Since the dynamics of each system is governed by multiple coupled differential equations,
the discovery is conducted independently to compute the average recovery rate for each equation, among which the
minimum rate is taken to represent each model’s overall capability. c, Average computational time of SR algorithms
on 16 nonlinear chaotic dynamics datasets.
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Gaussian noise added to the clean data) while determining the velocity states via smoothed numeri-
cal differentiation. We compare PTS with three pivotal baseline models (namely, Bayesian machine
scientist (BMS) [12], PySR [50] and NGGP [45]) and run each model on 50 different random seeds
to calculate the average recovery rate for each dataset. Here, we dropped DGSR [34] for comparison
given its poor performance in the previous benchmark tests, and included BMS for comparison since
it is specifically designed to perform discovery of equations with coefficients. Considering the noise
effect, the criterion for successful equation recovery in this experiment is defined as follows: the
discovered Pareto front covers the structure of the ground truth equation (allowing for a constant
bias term). Since the dynamics of each system is governed by multiple coupled differential equations
(e.g., 3„4 as shown in Supplementary Table S.3–S.6), the discovery is conducted independently to
compute the average recovery rate for each equation, among which the minimum rate is taken to
represent each model’s overall capability.

Our main focus herein is to investigate whether SR methods can successfully recover the un-
derlying differential equations without any a priori knowledge under the limit of a short period of
computational time (e.g., one minute). In our experiments, we set the candidate binary operators
as `, ´, ˆ, and ˜, while the candidate unary operators include sin, cos, exp, log, tanh, cosh,
abs, and sign. Fig. 3 depicts the results of discovering the closed-form governing equations for
16 chaotic dynamical systems. The experiments demonstrate that the proposed PTS approach can
achieve a much higher symbolic recovery rate (see Fig. 3b), while maintaining a much lower compu-
tational cost as depicted in Fig. 3c), enabling to identify more accurately the underlying governing
equations, even under noise effect, to better describe the chaotic behaviors (see Fig. 3a). This
substantiates the capability and efficiency of our method on data-driven discovery of governing laws
for more complex chaotic dynamical systems beyond the Lorenz attractor. More detailed results
are listed in Supplementary Fig. S.3 and Supplementary Table S.13.

Electro-mechanical positioning system

Real-world data, replete with intricate noise and nonlinearity, may hinder the efficacy of SR
algorithms. To further validate the capability of our PTS model in uncovering the governing equa-
tions for real-world dynamical systems (e.g., mechanical devices), we test its performance on a set
of lab experimental data of an electro-mechanical positioning system (EMPS) [53], as shown in Fig.
4a–b. The EMPS setup is a standard configuration of a drive system used for prismatic joints in
robots or machine tools. Finding the governing equation of such a system is crucial for designing
better controllers and optimizing system parameters. The dataset was bifurcated into two even
parts, serving as the training and testing sets, respectively. The reference governing equation is
given by M :q “ ´Fv 9q ´ Fcsignp 9qq ` τ ´ c [53], where q, 9q, and :q represent joint position, velocity,
and acceleration. Here, τ is the joint torque/force; c, M , Fv, and Fc are all constant parameters in
the equation. In EMPS, there exists friction that dissipates the system energy. Based on this prior
knowledge, we include the sign operator to model such a mechanism. Hence, the candidate math
operators we use to test the SR algorithms read t`,´,ˆ,˜, sin, cos, exp, log, signu.

We compare our PTS model with three pivotal baseline models, namely, PySR [50], NGGP [45],
and BMS [12]. We execute each SR model 20 trials on the training dataset to ascertain the Pareto
fronts. Subsequently, we select the discovered equation from the candidate expression set of each
Pareto front based on the test dataset which exhibits the highest reward value delineated in Eq. (8).
The reward is designed to balance the prediction error and the complexity of the discovered equation,
which is crucial to derive the governing equation that is not only as consistent with the data as
possible but also parsimonious and interpretable. Finally, we select among 20 trials the discovered
equation with the median reward value to represent each SR model’s average performance. The
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Fig. 4: Discovering the underlying physical laws with experimental data. a, The setup of the EMPS
experiment. b, Collected displacement and input force data. c, The prediction performance along with the governing
equation discovered by PTS. d, The prediction performance along with the governing equation discovered by PySR.
e, The prediction performance along with the governing equation discovered by BMS. f, The prediction performance
along with the governing equation discovered by NGGP. g, The transformed (or collapsed) Nikuradse’s dataset and
discovered equations of turbulent friction by different SR methods. The legend shows the median reward models (see
Eq. (8)), among 20 trials, obtained by PTS (red), PySR (green) [50], NGGP (purple) [45], and BMS (blue) [12]. h,
The fitting performance of each SR method on the original Nikuradse’s data. i, The prediction mean square error
(MSE) of each model. Notably, our PTS method excels at fitting turbulent friction data within a predefined time
budget of 1.5 minutes, meanwhile discovering a more parsimonious equation.

runtime of each model is limited to around 1.5 minutes. The results demonstrate that our PTS
model achieves the best performance in successfully discovery of the underlying governing equation
(see Fig. 4c–f).

Governing equation of turbulent friction

Uncovering the intrinsic relationship between fluid dynamics and frictional resistance has been
an enduring pursuit in the field of fluid mechanics, with implications spanning engineering, physics,
and industrial applications. In particular, one fundamental challenge lies in finding a unified formula
to quantitatively connect the Reynolds number (Re), the relative roughness r{D, and the friction
factor λ, based on experimental data. The Reynolds number, a dimensionless quantity, captures
the balance between inertial and viscous forces within a flowing fluid, which is a key parameter in
determining the flow regime, transitioning between laminar and turbulent behaviors. The relative
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roughness, a ratio between the size of the irregularities and the radius of the pipe, characterizes
the interaction between the fluid and the surface it flows over. Such a parameter has a substantial
influence on the flow’s energy loss and transition to turbulence. The frictional force, arising from
the interaction between the fluid and the surface, governs the dissipation of energy and is crucial
in determining the efficiency of fluid transport systems. The groundbreaking work [54] dated in the
1930s stepped out the first attempt by meticulously cataloging in the lab the flow behavior under
friction effect. The experimental data, commonly referred to as the Nikuradse dataset, offers insights
into the complex interplay between these parameters (Re and r{D) and the resultant friction factor
(λ) in turbulent flows. We herein test the performance of the proposed PTS model in uncovering
the underlying law that governs the relationship between fluid dynamics and frictional resistance
based on the Nikuradse dataset.

We firstly transform the data by a data collapse approach [55], a common practice used in
previous studies [56, 57]. Our objective is to find a parsimonious closed-form equation given by
λ̄ “ h̄pxq, where λ̄ “ λ´1{2`2 log pr{Dq denotes the transformed friction factor, x “ Re

a

λ{32pD{rq

an intermediate variable, and h̄ the target function to be discovered. We consider three baseline
models for comparison, namely, PySR [50], NGGP [45], and BMS [12]. The candidate operators
used in these models read t`,ˆ,´,˜, sin, cos, exp, log, tanh, cosh, ˝2, ˝3u. We run each SR model
for 20 independent trials with different random seeds under the time budget of 1.5 minutes and
choose the identified expression with the median reward as the representative result. For each trial,
we report the expression with the highest reward (see Eq. (8)) on the discovered Pareto front. Fig.
4g illustrates discovered governing equations for turbulent friction. The fitting performance of each
SR method and the prediction error distribution are shown in Fig. 4h–i. It can be observed that
our PTS model achieves the best performance.

Model performance analysis

The performance of the proposed PTS model depends on several factors, including the noise
level of the given data, model hyper-parameters, and whether certain modules are used. Herein, we
present an analysis of these factors as well as the model efficiency and the memory footprint.

Model ablation study. We conduct three cases of model ablation study to evaluate the role
of certain modules. First, we investigate how much improvement the use of MCTS for automatic
discovery of admissible tokenized input brings. Second, we conduct a sensitivity analysis of the
token constants range. Third, we investigate the extent of the benefit of using DR Mask. The
results of the ablation experiments are shown in Fig. 5a–c.

Firstly, we evaluate the symbolic recovery rate to observe the impact of replacing MCTS with
random generation of input tokens for PSRN. The tests are conducted on the Nguyen-7/12, R-1/2/3
and Livermore-1/3/5/12/13/15/18/22 benchmark expressions, selected because of their higher com-
plexity. It can be observed in Fig. 5a that the recovery rate diminishes if MCTS is removed from
PTS, indicating its vital role in admissible token search that signals the way forward for expression
exploration. Secondly, to investigate the sensitivity of our model to the randomly sampled token
constants, we set the range to r0, 1s, r0, 3s, and r0, 10s respectively, and performed the experiments
on the Nguyen-c benchmark expressions. The result in Fig. 5b shows that when the token constants
are sampled from the range excluding the ground truth, the model needs to spend extra search effort
to retain the accuracy (e.g., recovery rate). Last but not least, we test the efficacy of DR Mask for
memory saving. The result in Fig. 5c illustrates that DR Mask is able to save the graphic memory
around 50%, thus improving the capacity of the operator set (e.g., more operators could be included
to represent complex expressions).
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Fig. 5: Ablation study of the proposed PTS model. a, Ablation of MCTS. b, Ablation of token constants
range. c, Ablation of DR Mask on two different PTS configurations: (c.1) a 4-input, 3-layer PSRN with OKoza library
(e.g., t`, ˆ, ´, ˜, identity, sin, cos, exp, logu), and (c.2) a 5-input, 3-layer PSRN with OSemiKoza library (e.g., t`,
ˆ, SemiSub, SemiDiv, identity, neg, inv, sin, cos, exp, logu). d, Robustness of PTS to noise. e, Expression search
efficiency of the PSRN module. f, Space complexity of PSRN with three Symbol Layers, with respect to the number
of input slots and memory footprints. We incorporate four operator sets: OKoza, OSemiKoza, OArithmetic (e.g., t`,
ˆ, ´, ˜, identityu), and OBasicKoza (e.g., t`, ˆ, identity, neg, inv, sin, cos, exp, logu) for comparison. With the
expansion of the memory footprint, our model demonstrates scalability by evaluating a greater number of candidate
expressions in a single forward pass, leading to enhanced performance.

Robustness to noise. To test the robustness of our PTS model to measurement noise, we con-
ducted experiments with different levels of noise (e.g., Gaussian-type) and data availability for
the target equation fpxq “ 0.3x3 ` 0.5x2 ` 2x where x P r´1, 1s [42]. The operators used were
t`,´,ˆ,˜u. Since noise may cause inaccurate constant fitting, our evaluation criterion is set to
consider the equation uncovered successfully as long as the correct equation form is found. The
heatmap in Fig. 5d shows the effectiveness of our model, which indicates that PTS has a fairly high
level of robustness against data noise and scarcity.

Expression search efficiency. We compare the efficiency of PTS in the context of evaluation
of large-scale candidate expressions, in comparison with two brute-force methods (e.g., NumPy [58]
that performs CPU-based evaluation serially, and CuPy [59] that operates on GPUs in parallel based
on batches). Note that PTS possesses the capability of automatic identification and evaluation of
common subtrees, while NumPy and CuPy do not have such a function. Assuming independent
input variables tx1, . . . , x5u with operators t`, ˆ, identity, neg, inv, sin, cos, exp, logu for a maxi-
mum tree depth of 3, the complete set of generated expressions is denoted by F̂ . We consider the
computational time required to evaluate the loss values of all the expressions, e.g., ||y ´ f̂pXq||22
where f̂ P F̂ , under different sample sizes (e.g., 101 „ 104 data points).

The result shows that PTS can quickly evaluate all the corresponding expressions, clearly sur-
passing the brute-force methods (see Fig. 5e). When the number of samples is less than 104, the
search speed of PTS is about 4 orders of magnitude faster, exhibiting an unprecedented increase in
efficiency, thanks to the reuse of common subtree evaluation in parallel. Notably, when the number
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of samples is big, downsampling of the data is suggested in the process of uncovering the equation
structure in order to take the speed advantage of PTS during forward propagation. In the coefficient
estimation stage, all samples should be used. This could further increase the efficiency of PTS while
maintaining accuracy.

Space complexity. We categorize the operators used in PTS into three types: unary, binary-
squared, and binary-triangled, which are represented by u, bS , and bT , respectively. Binary-squared
operators represent non-commutative operators (e.g., ´ and ˜) depending on the order of operands,
which requires ω2

i´1 space on GPU during PSRN forward propagation (here, ωi´1 represents the
input size of the previous symbol layer). Binary-triangled operators represent commutative oper-
ators (e.g., ` and ˆ) or the memory-saving version of non-commutative operators that only take
up ωi´1pωi´1 ` 1q{2 space (e.g., the SemiSub and SemiDiv symbols, described in Methods: Sym-
bol layer, in the Feynman benchmark which are specifically designed to save memory and support
operations in only one direction).

With the number of operators in each category denoted by Nu, NbS and NbT , and the number of
independent variables and layers of PTS denoted by m and l, respectively, the number of floating-
point values required to be stored in PTS can be analyzed. Ignoring the impact of DR Mask, there
is a recursive relationship between the tensor dimension of the pi ´ 1q-th layer (e.g., ωi´1) and that
of the i-th layer (e.g., ωi), namely,

ωi “ Nuωi´1 ` NbSω
2
i´1 ` NbTωi´1

ωi´1 ` 1

2
ď κω2

i´1,

where κ “ Nu ` NbT ` NbS . Thus the complexity of the number of floating-point values required
to be stored by an l-layer PSRN can be calculated as Opκ2

l´1ω2l
0 q, where ω0 represents the number

of input slots.
Clearly, the memory consumption of PSRN increases dramatically with the number of layers. If

each subtree value is a single-precision floating-point number (e.g., 32-bit), with the input dimension
of 20 and operator set t`,´,ˆ,˜, identity, sin, cos, exp, logu, the required memory will reach over
105 GBs when the number of layers is 3, which requires a large compute set. Hence, finding a new
strategy to relax the space complexity and alleviate the memory requirement is needed to further
scale up the proposed model. Fig. 5f illustrates the graphic-memory footprint of various three-
layered PSRN architectures, each characterized by a different operator set and the number of input
slots. While the rise in memory demands serves as a constraint, this escalation is directly tied to
the scalable model’s ability to evaluate a greater number of candidate expressions within a single
forward pass. This result also shows that PSRN follows the scaling law (e.g., the model capacity
and size scale with the number of token inputs, given the fixed number of layers). The detailed
hardware settings are found in Supplementary Note 2.5.

Discussion

This paper introduces a new SR method, called PTS, to automatically and efficiently discover
parsimonious equations to interpret the given data. In particular, we propose a PSRN architecture
as the core search engine, which (1) automatically captures common subtrees of different symbolic
expression trees for shared evaluation to expedite the computation, and (2) capitalizes on GPU-
based parallel search with a notable performance boost. By recognizing and exploiting common
subtrees in a vast number of candidate expressions, PSRN effectively bypasses the inefficiency and
redundancy of independently evaluating each candidate. Such a strategy not only increases the
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likelihood of directly finding the global optima in the grand search space but also significantly
expedites the discovery process. Furthermore, resorting to high-performance GPUs, the proposed
PTS model marks a pivotal transition towards a more rapid and efficient SR paradigm. When
coupled with MCTS, the model’s ability to delve into complex expressions is further magnified,
showing a promising potential to push the boundaries of solving more complex SR problems.

The efficacy of PTS has been extensively evaluated in discovering a variety of complex mathe-
matical equations based on both synthetic and experimental datasets, including multiple benchmark
problem sets (e.g., Nguyen, Nguyen-c, R, Livermore, and Feynman), nonlinear chaotic dynamics,
and two datasets collected via lab experiments (e.g., EMPS and turbulent friction). We have demon-
strated that PTS possesses a powerful capability in general-purpose SR, exhibiting a remarkably
superior recovery rate and speed. The performance of PTS exceeds comprehensively several rep-
resentative baseline models, achieving up to two orders of magnitude efficiency improvement while
maintaining a much better accuracy. Moreover, even for a target equation in a very complex form,
the PTS model is still capable of swiftly and reliably uncovering the ground truth directly, rather
than being led astray by the ambiguous patterns present in the data. Consequently, PTS excels in
discovering accurate and parsimonious expressions from very limited data in a short time of budget.

Despite its demonstrated efficacy and potential, the PTS model is faced with several challenges
that need to be addressed in the future. Firstly, the PSRN module has a rapidly increasing demand
for memory while increasing the number of symbol layers (see Model performance analysis: Space
complexity). Currently, a brute-force implementation of PSRN can only directly handle expressions
with a parse tree depth ď 3 under conventional settings. Otherwise, such a method relies on MCTS,
which locates advanced tokenized input, to extend PSRN’s capacity to interpret deeper parse trees.
This bottleneck impedes the PTS’s exploration of much deeper expressions. An ongoing work
to tackle this issue lies in designing a learnable score-based sampling strategy to select a finite
number of optimal subtrees for the generation of candidate expressions at a deeper layer. This
has the potential to deepen the symbol layers meanwhile saving the graphic memory requirement.
Secondly, it should be noted that our model is of limited heuristic guidance. This arises from the
fact that MCTS primarily serves to offer directional cues and steer PSRN away from re-searching
the base expressions set that has already undergone forward computation. It lacks the continuous
ability to analyze expressions within the Pareto front. This shortfall implies that over an extended
runtime, the advantage of our PTS method compared to heuristic techniques (e.g., GP) tends to
diminish. However, this sheds light on the path for our future work on incorporating a Pareto front
analysis component (e.g. meta-heuristic algorithms) into PTS to further improve its performance.
Lastly, the current work does not take into account our prior knowledge or dimensional constraints
(e.g., the unit of a physical quantity). Another exciting ongoing work by the authors attempts
to integrate the units of the input variables to identify expressions that comply with dimensional
constraints. Such a strategy has the potential to conserve the graphic memory requirement and, at
the same time, expedite the search. We intend to continue addressing these challenges methodically
in our forthcoming research.

Methods

The NP-hardness of SR has been noted in existing studies [28, 30, 45], followed by a formal proof
recently [46]. This implies the absence of a known solution that can be determined in polynomial
time for solving SR problems across all instances, and reflects that the search space for SR is indeed
vast and intricate. Almost all the existing SR methods involve a common procedure, which is to
assess the quality of candidate expressions F̂ “ tf̂1, f̂2, ...u based on the given data D “ pX,yq,
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where X P Rnˆm, y P Rnˆ1. Here, f̂ is usually constructed by a given operator set O (e.g.,
t`,ˆ,´,˜, sin, cos, exp, logu). Typically, this evaluation is guided by the mean square error (MSE)
expressed as:

MSE “
1

n
||f̂pXq ´ y||22. (1)

During the search process, a large number of candidate expressions need to be evaluated, while the
available operators and variables are limited, leading to the inevitable existence of vast repeated
sub-expressions. Existing methods evaluate candidate expressions sequentially and independently.
As a result, the common intermediate expressions are repeatedly calculated, leading to significant
computational burden (see Supplementary Fig. S.1). By reducing the amount of repeated compu-
tation, the search process can be significantly accelerated.

Symbol layer

A mathematical expression can be equivalently represented as a parse tree [13], where the internal
nodes denote mathematical operators and the leaf nodes the variables and constants. The crux of
the aforementioned computational issue lies in the absence of temporary storage for subtree values
and parallel evaluation. Consequently, the common subtrees in different candidate expressions are
repeatedly evaluated, resulting in significant computational wastage.

To this end, we introduce the concept of Symbol Layer (see Fig. 1c), which consists of a
series of mathematical operators. The Symbol Layer serves to transform the computation results
of shallow expression parse trees into deeper ones. From the perspective of avoiding redundant
computations, the results of the Symbol Layer are cached and can be utilized by parse trees with
greater heights. From the view of parallel computation, the Symbol Layer can leverage the power of
GPU to compute the results of common subtrees in parallel, significantly improving the overall speed
(see Supplementary Fig. S.1). We categorize the mathematical operators in the Symbol Layer into
three types: (1) unary operators, (e.g., sin and exp); (2) binary-squared operators (e.g., ´ and ˜),
representing non-commutative operators; (3) binary-triangled operators, representing commutative
operators (e.g., ` and ˆ) or a variant of non-commutative operators with low-memory footprint
(e.g., SemiSub and SemiDiv that output xi ´ xj and xi ˜ xj for i ď j, respectively). Note that
the binary-triangled operators only take up half of the space compared with the binary-squared
operators. We denote these three types of operators as u, bS , and bT , respectively. Mathematically,
a Symbol Layer located at the l-th level can be represented as follows:

hplq “

˜

Nu

}
i“1

ui

´

hpl´1q
¯

¸

}

¨

˝

NbS

}
i“1

bSi

´

hpl´1q
¯

˛

‚}

¨

˝

NbT

}
i“1

bT i

´

hpl´1q
¯

˛

‚, (2)

where
uphq “ }

i

uphiq, bSphq “ }
i,j

bSphi, hjq, bT phq “ }
iďj

bT phi, hjq. (3)

Here, } represents the concatenation operation; Nu, NbS and NbT denote the numbers of unary
operators, binary-squared operators and binary-triangled operators.

For example, let us consider independent variables tx1, x2u and dependent variable z, with the
task of finding an expression that satisfies z “ fpx1, x2q. When the independent variables tx1, x2u

are fed into a Symbol Layer, we obtain the combinatorial results (e.g., tx1, x2, sin px1q, sin px2q, . . . , x1`

x1, x1 `x2, x2 `x2, . . .u). Notably, each value in the output tensor of the Symbol Layer corresponds
to a distinct sub-expression. This enables PTS to compute the common subtree values just once,
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avoiding redundant calculations. Additionally, the Symbol Layer can be leveraged on the GPU for
parallel computation, further enhancing the speed of expression searches significantly.

When establishing a Symbol Layer initially, an inherent offset tensor Θ is inferred and stored
within the layer for subsequent lazy symbolic deducing during the backward pass (see Extended
Data Fig. 1). For the l-th Symbol Layer, its offset tensor can be represented as follows:

Θplq “

˜

Nu

}
i“1

Θu

¸

}

¨

˝

NbS

}
i“1

ΘbS

˛

‚}

¨

˝

NbT

}
i“1

ΘbT

˛

‚, (4)

where

Θu “

„

1 ¨ ¨ ¨ ω
H ¨ ¨ ¨ H

ȷ

2ˆω

, (5a)

ΘbS “

ω

}
j“1

„

1 ¨ ¨ ¨ ω
j ¨ ¨ ¨ j

ȷ

2ˆω2

, (5b)

ΘbT “

ω

}
j“1

„

1 ¨ ¨ ¨ ω ´ j ` 1
j ¨ ¨ ¨ j

ȷ

2ˆ
ωpω`1q

2

. (5c)

Here, ω represents the output dimension (e.g., the number of symbolic parse trees) of the previous
layer.

Each position in the output tensor hplq of the Symbol Layer corresponds to a unique column
in the offset tensor Θplq. In other words, it corresponds to two child indices (for unary operators,
only one), representing the left and right child nodes of the current output tensor position from
the previous layer. These offset tensors are used for recursive backward symbol deduction after the
position of a minimum MSE value is found.

Parallel symbolic regression network

By stacking multiple Symbol Layers, we can then construct a PSRN as shown in Fig. 1c. This
network takes in a set of admissible base expressions, denoted by s, along with their corresponding
data tensor X, and is capable of utilizing GPU for rapid parallel forward computation on the data
(e.g., typically within a mere few seconds). Based on the operators set O, a multitude of distinct
subtree values are efficiently computed layer by layer. Once the calculations of the final layer are
completed, hundreds of millions of expression parse tree values F̂pXq “ tf̂1pXq, f̂2pXq, . . .u could
be obtained. These generated candidate expressions make use of intermediate results of common
subtrees, thus avoiding extensive redundant computations. Subsequently, these candidate expression
values are used to compute the MSE defined in Eq. (1) for each f̂i (i “ 1, 2, . . . , |F |), in order to
identify the position of the minimum value in the error tensor. Then, the pre-generated offset tensor
Θ in each layer, containing the indices of each node’s children, is leveraged to efficiently trace where
their constituent sub-expressions originate and recover the top-level operators among them. This
enables recursive inference of the optimal candidate expression(s) in a layer-wise manner. Extended
Data Fig. 1 provides a more detailed elucidation of the implementation specifics of PSRN.

As the number of layers increases, the required GPU memory also grows rapidly. In Model
performance analysis: Space complexity, the space complexity of PSRN is discussed in detail. For
the experiments, we use a 3-layer PSRN configuration by default. In the SR benchmark tasks,
we employ a 5-input PSRN with the operator set OKoza “ t`,ˆ,´,˜, identity, sin, cos, exp, logu,
except for the Feynman expression set which uses a 6-input PSRN with the operator set OSemiKoza “
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t`,ˆ, SemiSub,SemiDiv, identity, neg, inv, sin, cos, exp, logu. Such a setting aims to conserve GPU
memory for handling more input variables. The distinguishing feature of the OSemiKoza operator set
is that it treats division and subtraction as binary-triangled operators and allows only one direction
of operation (see Methods: Symbol layer). This trade-off reduces expressive power but conserves
GPU memory, which enables to tackle larger scale SR tasks.

PSRN regressor with Monte Carlo tree search

Given the data tensor X and the corresponding base expression set s, we obtain the values
of expressions for all parse trees with depths up to l, namely, tf̂pXq|dpf̂q ď lu, where l denotes
the number of Symbol Layers in PSRN (e.g., l “ 3 for typical cases). On a graphics card with
80GB of memory, we can allocate space for up to 5 inputs for PSRN with the operators set OKoza.
Apart from the independent variables, the remaining input slots can be used for more complex
sub-expressions. For example, given independent variables x1 and x2, the additional slots can
be employed to try other base expressions like x1 ` x1, x1 ˆ x2, and sinpx1q, which enables the
network to derive deeper parse trees based on these additional inputs of the slot. Therefore, the
task of identifying admissible inputs can be approached as a search problem. The algorithm is
anticipated to progressively expand the base expression set until all the slots are used, resulting
in a terminal state sT “ tx1, x2, g1px1, x2q, g2px1, x2q, g3px1, x2qu. Then, a forward propagation is
conducted by PSRN using sT as the base expression set to enrich and diversify the generation of
potential expression trees. Such an approach could facilitate the exploration of deeper expressions
(e.g., tf̂pXq|dpf̂q ą lu) and broadens the spectrum of candidate expressions.

Here, we utilize MCTS to tackle this search problem. MCTS is a decision-making algorithm
designed for exploring vast combinatorial spaces represented as search trees. This approach follows
the best-first search principle, relying on evaluations from stochastic simulations. MCTS consists of
four iterative steps: selection, expansion, simulation, and backpropagation (see Fig. 1a) described
in the following.

(1) Selection: Starting from the initial base expression set s0 as the root node, the algorithm
iteratively chooses a new node with the highest Upper Confidence Bounds applied to Trees
(UCT) value [38] defined as

UCTps, aq “ Qps, aq ` c

d

lnNpsq

Nps, aq
, (6)

where a represents the action of inserting a new base expression f 1 into the current node s.
Qps, aq is the expected value associated with node s and action a. Npsq is the total number
of visits to node s. Nps, aq is the number of visits to node s after taking action a. c is an
exploration parameter. Each node in the search tree denotes a distinct base expression set.

(2) Expansion: If a node st is expandable, MCTS expands it by randomly selecting an unvisited
node st`1. During the expansion of node st, a new base expression f 1 is then generated by
combining the base expressions present in st. The new base expression set is obtained by
adding f 1 to st, expressed as

st`1 “ st Y tf 1u. (7)

(3) Simulation: Following the expansion, if the current node is non-terminal, a playout sequence
is initiated that continues through successive states until a terminal node, denoted by sT , is
reached. Then, the PSRN conducts a forward propagation, combining all the base expressions
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in sT and finding the expression f̃ that minimizes the MSE in Eq. (1). The expression’s
reward is calculated by

r “
ηα

1 `
?
MSE

, (8)

where η is a discount factor promoting concise trees (e.g., 0.99 by default), and α represents
the complexity of f̃ . Here, we consider the number of operators in an expression as a proxy
for its complexity. If token constants are enabled, f̃ is first optimized through a least squares
optimization step to obtain f˚, which is discussed in Methods: Coefficients tuning.

(4) Backpropagation: The reward of the expression is backpropagated along the original path,
updating the expected values Q and visit counts N of the involved nodes.

The algorithm involves a series of epochs, represented by Ne “ |sT |´|s0|, the difference between
the number of elements in a terminal state sT and the initial state s0. Within each epoch, a fixed
number of simulations is performed. At the end of each epoch, the node with the highest expected
value Q becomes the root node for the next epoch. This iterative process facilitates systematic
exploration of the search space and leverages the accumulated knowledge from previous simulations.

Coefficients tuning

When handling expressions with coefficients, we pre-select a sampling range for token constants
and reserve multiple input slots of the network. Before excuting each PSRN forward propagation,
several constants are sampled and fed into the PSRN along with the base expressions (Fig. 1b).
The sampled token constants can be combined with various operators within the network to form
a more diverse set of constants. For example, 1.6 and 2.3 can be combined as 1.6 ` 2.3, expp2.3q,
2.3{ sinp1.6q, etc. This allows the network to rapidly increase the range of coefficients it can represent
as the number of network layers deepens. After each forward propagation, we obtain expressions
F̃ “ tf̃1, f̃2, . . . , f̃ku that best fit the given data, where k is a pre-defined number, denoted as

F̃ “ PSRNconstpX,yq. (9)

We parse the searched expression f̃ , take out its coefficients as the initial values, and apply least-
squares (LS) optimization to derive the optimized expression f˚ given by

f˚
i “ LSpf̃i,X,yq, i “ 1, . . . , |F̃ |. (10)

It is noted that, due to PSRN’s tendency to prefer relatively complex expressions when searching
equations containing coefficients, we introduce a linear regression step for the given independent
variables before each MCTS begins. This step was implemented to expedite the process of discov-
ering simpler expressions using PTS.

Duplicate removal mask

One major limitation of standard PSRN lies in its high demand for graphics memory. When using
binary operators such as addition and multiplication, the graphics memory required for each layer
grows quadratically with respect to the tensor dimensions of the previous layer. Therefore, reducing
the output dimension of the penultimate layer can significantly reduce the required graphics memory.
We propose a technique called Duplicate Removal Mask (DR Mask) as shown in Fig. 1e. Before
the last PSRN layer, we employ the DR Mask to remove repeated terms and generate a dense input
set. Specifically, assuming the input variables x1, x2, ..., xm are independent, we extract the output
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expressions from the last second layer, parse them using the symbolic computing library SymPy,
and remove duplicate expressions to obtain a mask of unique expressions. SymPy’s efficient hash
value computation facilitates the comparison of mathematical expressions for symbolic equivalence.
Typically, this process takes less than a minute. Once the DR Mask is identified, it is reusable for
PSRNs with the same architecture (e.g., total number of network layers and operator sets). During
the search process, the expressions marked by the mask are extracted from the penultimate layer’s
output tensor and then passed to the final layer for the most graphics-intensive binary operator
computations. The percentage of graphics memory saved by the DR Mask technique depends on
the input size, the number of layers, and the operators used in the PSRN architecture. Detailed
results are shown in Model ablation study.

Baseline models

We consider five main baseline SR algorithms used in the comparasion analysis: DGSR [34],
NGGP [45], PySR [50], BMS [12] and SPL [42]. They represent a selection of SR algorithms, ranging
from recent advancements to established, powerful methods. The introduction and detailed settings
of the baseline models are found in Supplementary Note 2.3.

Data availability

All the datasets used to test the methods in this study are available on GitHub at https:
//github.com/intell-sci-comput/PTS.

Code availability
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Extended Data Fig. 1: The detailed process of PSRN forward propagation for obtaining the optimal
expression. Note that, to maintain simplicity, token constants are not shown here and the illustration is limited to
an example with only two layers. Step 1: The input data X and the base expression set s are fed into PSRN for
forward propagation. Based on the designated operator categories, a large number of distinct subtree values h, e.g.,
F̂pXq are rapidly calculated layer by layer (purple). Step 2: The MSE is computed between the final layer’s output
and the broadcast target tensor y, resulting in the loss tensor. Step 3: The position of the minimum value in the loss
tensor is selected. Step 4: Starting from the optimal position, a recursive symbolic deducing is performed using the
offset tensor Θ generated when building the network, ultimately yielding the optimal expression. If necessary, the
coefficients of this expression will be adjusted in post-processing.
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Supplementary Information

1 Background

As far as we know, existing SR algorithms inevitably rely on a necessary step, namely evaluating
large-scale candidate expressions F̂ “ tf̂1, f̂2, . . .u on the given data D “ pX,yq to obtain the error.
While some methods involving the use of neural networks can generate candidate expressions using
GPUs, the process of obtaining the error for each mathematical expression still depends on sequential
and independent evaluations using CPUs. When the number of expressions to be evaluated becomes
sufficiently large, there will be a significant amount of redundant evaluations of common subtrees
inevitably. In Figure S.1, we illustrate the fundamental difference between the PSRN module of
PTS and existing methods in terms of symbolic expression evaluation.

...

Parallel Evaluation

GPU

...

Independent

Evaluation

①

②

③

④

⑤

⑥

...

CPU

......

...

Reusage of Subtrees

Figure S.1: Comparison between CPU independent evaluation and GPU parallel evaluation. The PSRN significantly
reduces unnecessary computational workload through the reuse of common subtree values when operating on GPUs.
Subtrees bearing identical values are indicated by the same color, while the dashed lines trace the propagation of
these subtree values throughout the PSRN architecture.

2 Methodology

2.1 Benchmark Symbolic Regression Problems

We employed the Nguyen, Nguyen-c [47, 48], R, R* [49], Livermore [45], and Feynman [30]
benchmark problem sets to evaluate the symbolic recovery rate and recovery speed of the algorithms.
The specific benchmark problem settings were consistent with those described in the NGGP [45]
and DGSR [34]. Table S.1 and S.2 shows these SR benchmark problems.
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Table S.1: Nguyen, Nguyen-c, R and R* Benchmark Problems. U denotes uniform sampling over the interval, while
E denotes equidistant sampling over the interval. The three parameters pa, b, cq represent the lower bound, upper
bound, and the number of sampling points within the interval. The operator set used is t`,ˆ,´,˜, sin, cos, exp, logu.

Benchmark Expression Dataset Tokens

Nguyen-1 x31 ` x21 ` x1 Up´1, 1, 20q tx1u

Nguyen-2 x41 ` x31 ` x21 ` x1 Up´1, 1, 20q tx1u

Nguyen-3 x51 ` x41 ` x31 ` x21 ` x1 Up´1, 1, 20q tx1u

Nguyen-4 x61 ` x51 ` x41 ` x31 ` x21 ` x1 Up´1, 1, 20q tx1u

Nguyen-5 sinpx21q cospx1q ´ 1 Up´1, 1, 20q tx1u

Nguyen-6 sinpx1q ` sinpx1 ` x21q Up´1, 1, 20q tx1u

Nguyen-7 logpx1 ` 1q ` logpx21 ` 1q Up0, 2, 20q tx1u

Nguyen-8
?
x1 Up0, 4, 20q tx1u

Nguyen-9 sinpx1q ` sinpx22q Up0, 1, 20q tx1, x2u

Nguyen-10 2 sinpx1q cospx2q Up0, 1, 20q tx1, x2u

Nguyen-11 xx2
1 Up0, 1, 20q tx1, x2u

Nguyen-12 x41 ´ x21 ` 1
2x

2
2 ´ x2 Up0, 1, 20q tx1, x2u

Nguyen-1c 3.39x31 ` 2.12x21 ` 1.78x1 Up´1, 1, 20q tx1, constu
Nguyen-2c 0.48x41 ` 3.39x31 ` 2.12x21 ` 1.78x1 Up´1, 1, 20q tx1, constu
Nguyen-5c sinpx21q cospx1q ´ 0.75 Up0, 2, 20q tx1, constu
Nguyen-8c

?
1.23x1 Up0, 4, 20q tx1, constu

Nguyen-9c sinp1.5x1q ` sinp0.5x22q Up0, 1, 20q tx1, x2, constu
Nguyen-10c sinp1.5x1q cosp0.5x2q Up0, 1, 20q tx1, x2, constu

R-1 px1 ` 1q3{px21 ´ x1 ` 1q Ep´1, 1, 20q tx1u

R-2 px51 ´ 3x3 ` 1q{px21 ` 1q Ep´1, 1, 20q tx1u

R-3 px61 ` x51q{px41 ` x31 ` x21 ` x1 ` 1q Ep´1, 1, 20q tx1u

R-1* px1 ` 1q3{px21 ´ x1 ` 1q Ep´10, 10, 20q tx1u

R-2* px51 ´ 3x3 ` 1q{px21 ` 1q Ep´10, 10, 20q tx1u

R-3* px61 ` x51q{px41 ` x31 ` x21 ` x1 ` 1q Ep´10, 10, 20q tx1u
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Table S.2: Livermore and Feynman Benchmark Problems. U denotes uniform sampling over the interval, while
E denotes equidistant sampling over the interval. The three parameters pa, b, cq represent the lower bound, upper
bound, and the number of sampling points within the interval. The operator set used is t`,ˆ,´,˜, sin, cos, exp, logu.

Benchmark Expression Dataset Tokens

Livermore-1 1{3 ` x1 ` sinpx21q Up´10, 10, 1000q tx1u

Livermore-2 sinpx21q cospx1q ´ 2 Up´1, 1, 20q tx1u

Livermore-3 sinpx31q cospx21q ´ 1 Up´1, 1, 20q tx1u

Livermore-4 logpx1 ` 1q ` logpx21 ` 1q ` logpx1q Up0, 2, 20q tx1u

Livermore-5 x41 ´ x31 ` x21 ´ x2 Up0, 1, 20q tx1, x2u

Livermore-6 4x4 ` 3x3 ` 2x2 ` x1 Up´1, 1, 20q tx1u

Livermore-7 sinhpx1q Up´1, 1, 20q tx1u

Livermore-8 coshpx1q Up´1, 1, 20q tx1u

Livermore-9 x91 ` x81 ` x71 ` x61 ` x51 ` x41 ` x31 ` x21 ` x1 Up´1, 1, 20q tx1u

Livermore-10 6 sinpx1q cospx2q Up0, 1, 20q tx1, x2u

Livermore-11 x41{px1 ` x2q Up´1, 1, 50q tx1, x2u

Livermore-12 x51{x32 Up´1, 1, 50q tx1, x2u

Livermore-13 x
1
3
1 Up0, 4, 20q tx1u

Livermore-14 x31 ` x21 ` x1 ` sinpx1q ` sinpx21q Up´1, 1, 20q tx1u

Livermore-15 x
1
5
1 Up0, 4, 20q tx1u

Livermore-16 x
2
5
1 Up0, 4, 20q tx1u

Livermore-17 4 sinpx1q cospx2q Up0, 1, 20q tx1, x2u

Livermore-18 sinpx21q cospx1q ´ 5 Up´1, 1, 20q tx1u

Livermore-19 x51 ` x41 ` x21 ` x1 Up´1, 1, 20q tx1u

Livermore-20 expp´x21q Up´1, 1, 20q tx1u

Livermore-21 x81 ` x71 ` x61 ` x51 ` x41 ` x31 ` x21 ` x1 Up´1, 1, 20q tx1u

Livermore-22 expp´1
2x

2
1q Up´1, 1, 20q tx1u

Feynman-1 x1x2 Up1, 5, 20q tx1, x2u

Feynman-2 x1
2p1`x2q

Up1, 5, 20q tx1, x2u

Feynman-3 x1x
2
2 Up1, 5, 20q tx1, x2u

Feynman-4 1 ` x1x2
1´px1x2{3q

Up0, 1, 20q tx1, x2u

Feynman-5 x1
x2

Up1, 5, 20q tx1, x2u

Feynman-6 1
2x1x

2
2 Up1, 5, 20q tx1, x2u

Feynman-7 3
2x1x2 Up1, 5, 20q tx1, x2u

Feynman-8 x1

e
x4x5
x2x3 `e

´
x4x5
x2x3

Up1, 3, 50q tx1, x2, x3, x4, x5u

Feynman-9 x1x2x3 log
x5
x4

Up1, 5, 50q tx1, x2, x3, x4, x5u

Feynman-10 x1px3 ´ x2qx4
x5

Up1, 5, 50q tx1, x2, x3, x4, x5u

Feynman-11 x1x2

x5px2
3´x2

4q
Up1, 3, 50q tx1, x2, x3, x4, x5u

Feynman-12 x1x2
2x3

3x4x5
Up1, 5, 50q tx1, x2, x3, x4, x5u

Feynman-13 x1pe
x2x3
x4x5 ´ 1q Up1, 5, 50q tx1, x2, x3, x4, x5u

Feynman-14 x5x1x2p 1
x4

´ 1
x3

q Up1, 5, 50q tx1, x2, x3, x4, x5u

Feynman-15 x1px2 ` x3x4 sinpx5qq Up1, 5, 50q tx1, x2, x3, x4, x5u
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2.2 Chaotic Dynamics Dataset

We use a nonlinear chaotic dynamics dataset called dysts [52]. Considering the widespread
presence of chaotic dynamics in the real world, such as in finance and meteorology, we believe that
this dataset act as a robust benchmark for evaluating SR algorithms’ ability to uncover underlying
physical laws. Using this dataset avoids solely focusing on toy examples like Lorenz Attrator [51]
(see Fig S.3), enabling a more objective and general assessment of SR algorithms’ performance. By
doing so, we can better understand the algorithm’s capabilities in uncovering underlying dynamical
equations.

We conducted tests using chaotic dynamics NewtonLiepnik [60], HyperLorenz [52], HyperJha
[52], HyperPang [61], ShimizuMorioka [62], GenesioTesi [63], Laser [64], Duffing [65], Brusselator
[66], KawczynskiStrizhak [67], Rucklidge [68], FitzHughNagumo [69], Finance [70], DequanLi [71],
Hadley [72] and SprottJerk [73]. Tables S.3, S.4, S.5 and S.6 show the governing equations of these
chaotic dynamics. For systems with additional external force, we set the coefficients of their external
force terms to 0 (i.e., autonomous chaotic dynamics). All other parameters were kept at their default
values from the dysts problem set. The trajectory data is generated by solving numerical equations,
and during this process, we sampled 1000 points, with every 100 points representing one period,
and introduced 1% Gaussian noise.

In this experiment, a large operator set t`,ˆ,´,˜, sin, cos, exp, log, abs, sign, tanh, coshu, are
used to simulate the situation in which scientists explore unknown systems in the real world with
no prior knowledge. The models being compared were allocated a time budget of approximately 90
seconds. After the algorithms completed their search, we assessed whether the Pareto front produced
by each algorithm contained expressions with the same structure (allowing for a constant bias term)
as the ground truth expression. We calculated the average recovery rate of the derivatives (e.g., 9x,
9y, 9z, which were determined using data affected by noise.) based on 50 repeated experiments, and
then selected the minimum recovery rate among these derivatives to represent the overall recovery
rate of the whole system.

2.3 Configurations of Models

PTS: The PTS model for the symbolic regression benchmark employs OKoza (i.e., t`, ˆ, ´, ˜,
identity, sin, cos, exp, logu) operators and, for 5-dimensional Feynman expressions, set to OSemiKoza

(i.e., t`, ˆ, SemiSub, SemiDiv, identity, neg, inv, sin, cos, exp, logu) for saving graphic memory. It
has a structure of 3 layers, accepts 5 input tokens (for 5-dimensional Feynman expressions, set to
6), and performs down-sampling when the number of samples exceeds 40. During each epoch, 400
MCTS simulations are conducted. The model tries 2 token constants within a range of [0, 3], repeat-
ing the process 3 times in a MCTS simulation. It retrieves the top 10 expressions with minimum
error in each PSRN forward pass and uses a sampling interval of 0.1 for token constants. For chaotic
dynamics, the operators expand to include t`,ˆ,´,˜, sin, cos, exp, log, tanh, cosh, sign, absu, and
down-sampling is set to 200. With a similar configuration, during each epoch, 3 MCTS simulations
are conducted (For DequanLi, used 10). It tries 2 token constants (For 4-dimensional chaotic dy-
namics, set to 1 for saving graphic memory) within a range of [0, 3], repeating the process once
in a MCTS simulation, and retrieves the top 30 expressions with minimum error in each PSRN
forward pass. For EMPS experiment, the operators used are t`,ˆ,´,˜, sin, cos, exp, log, signu,
and down-sampling is set to 200. During each epoch, 5 MCTS simulations are conducted. For the
turbulence experiment, the operators used are t`,ˆ,´,˜, sin, cos, exp, log, tanh, cosh, pow2, pow3u,
and down-sampling is set to 100. During each epoch, 5 MCTS simulations are conducted. In the
experiments described, when there is not enough graphic memory, ´ and ˜ operators are replaced
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Figure S.2: Visualization of 16 different nonlinear chaotic systems, each with 1% Gaussian noise added. For systems
with 4 dimensions, only the first 3 dimensions are shown.
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Table S.3: Chaotic dynamics 1 to 4.

Chaotic Dynamic Governing Equations Parameters

NewtonLiepnik
9x “ ´ax ` y ` 10yz

9y “ ´x ´ 0.4y ` 5xz

9z “ bz ´ 5xy

a : 0.4, b : 0.175

HyperLorenz

9x “ apy ´ xq ` w

9y “ ´xz ` cx ´ y

9z “ ´bz ` xy

9w “ dw ´ xz

a : 10, b : 2.667, c : 28, d : 1.1

HyperJha

9x “ apy ´ xq ` w

9y “ ´xz ` bx ´ y

9z “ xy ´ cz

9w “ ´xz ` dw

a : 10, b : 28, c : 2.667, d : 1.3

HyperPang

9x “ apy ´ xq

9y “ ´xz ` cy ` w

9z “ xy ´ bz

9w “ ´dpx ` yq

a : 36, b : 3, c : 20, d : 2

Table S.4: Chaotic dynamics 5 to 8.

Chaotic Dynamic Governing Equations Parameters

ShimizuMorioka
9x “ y

9y “ x ´ ay ´ xz

9z “ ´bz ` x2
a : 0.85, b : 0.5

GenesioTesi
9x “ y

9y “ z

9z “ ´cx ´ by ´ az ` x2
a : 0.44, b : 1.1, c : 1

Laser
9x “ apy ´ xq ` byz2

9y “ cx ` dxz2

9z “ hz ` kx2

a : 10.0, b : 1.0, c : 5.0,

d : ´1.0, h : ´5.0, k : ´6.0

Duffing
9x “ y

9y “ ´δy ´ βx ´ αx3

9z “ ω

α : 1.0, β : ´1.0, δ : 0.1, ω : 1.4
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Table S.5: Chaotic dynamics 9 to 12.

Chaotic Dynamic Governing Equations Parameters

Brusselator
9x “ a ` x2y ´ pb ` 1qx

9y “ bx ´ x2y

9z “ w

a : 0.4, b : 1.2, w : 0.81

KawczynskiStrizhak
9x “ γpy ´ x3 ` 3µxq

9y “ ´2µx ´ y ´ z ` β

9z “ κpx ´ zq

β : ´0.4, γ : 0.49, κ : 0.2, µ : 2.1

Rucklidge
9x “ ´ax ` by ´ yz

9y “ x

9z “ ´z ` y2
a : 2.0, b : 6.7

FitzHughNagumo
9x “ x ´ x3{3 ´ y ` curr

9y “ γpx ` a ´ byq

9z “ ω

a : 0.7, b : 0.8, curr : 0.965,

γ : 0.08, ω : 0.04365

Table S.6: Chaotic dynamics 13 to 16.

Chaotic Dynamic Governing Equations Parameters

Finance
9x “ p1{b ´ aqx ` z ` xy

9y “ ´by ´ x2

9z “ ´x ´ cz

a : 0.001, b : 0.2, c : 1.1

DequanLi
9x “ apy ´ xq ` dxz

9y “ kx ` fy ´ xz

9z “ cz ` xy ´ ϵx2
a : 40, c : 1.833, d : 0.16, ϵ : 0.65, f : 20, k : 55

Hadley
9x “ ´y2 ´ z2 ´ ax ` af

9y “ xy ´ bxz ´ y ` g

9z “ bxy ` xz ´ z

a : 0.2, b : 4, f : 9, g : 1

SprottJerk
9x “ y

9y “ z

9z “ ´x ` y2 ´ µz

µ : 2.017
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with SemiSub and SemiDiv to reduce the graphic memory needed.

DGSR: DGSR is designed for symbolic regression with a two-step process [34]. In the first
step, it pre-trains an encoder-decoder model on a vast set of mathematical expressions, aiming
to capture the posterior distribution. The second step involves refining this distribution during
inference to generate symbolic expressions. The framework incorporates a permutation-invariant
encoding mechanism and an autoregressive decoding process, leveraging transformer architecture
to handle the complexities of SR. We employed the code from https://github.com/samholt/
DeepGenerativeSymbolicRegression, specifically the version as of September 12, 2023, with de-
fault hyperparameters. Since the authors did not provide a pre-trained model for searching ex-
pressions containing coefficients, we retrained a constant expression search model with hardcoded
constants of 1, 5, and 10, using the operator library OKoza, following the settings in the repository’s
codebase. All other hyperparameters remain at their default values. The operators used are the
same as those in PTS.

NGGP: The NGGP [45] model proposes a novel methodology in the realm of symbolic regression
by integrating neural-guided search with genetic programming. This hybrid technique leverages
a neural network to seed the initial population for the genetic algorithm, aiming to capitalize on
the neural network’s pattern recognition capabilities to enhance the search process. The model
operates by cycling between generating candidate expressions through a neural sequence generator
and refining these candidates using a stateless genetic programming component. We utilized the
code from https://github.com/dso-org/deep-symbolic-optimization. For symbolic regression
benchmark tasks, we employed default hyperparameters, and use operator library OKoza. In physics
data tasks with a specified time budget, we used the same operator sets as PTS and 5 GP iterations,
20000 training samples in each training epoch to avoid excessively long training sessions, and batch
size is selected to be 50. The operators used are the same as those in PTS.

PySR: PySR [50] is an open-source symbolic regression library that employs a multi-population
genetic algorithm for equation discovery. It features an evolutionary approach through an evolve-
simplify-optimize loop, focusing on the enhancement of constant optimization in empirical expres-
sions. PySR utilizes tournament selection and incorporates elements of simulated annealing within
its algorithmic structure, aiming to improve the search process. The library operates on a highly
optimized Julia backend, SymbolicRegression.jl, which is integral to its performance and efficiency
in handling SR tasks. We use the code available at https://github.com/MilesCranmer/PySR. For
different experiments, we used the same operator sets as PTS and restrict the approximate time
budget by setting the number of iterations. In benchmark symbolic regression problems, the number
of iterations is selected to be 10000. In chaotic dynamics experiments and EMPS experiment, the
number of iterations is selected to be 30. In turbulence experiment, the number of iterations is
selected to be 135. The operators used are the same as those in PTS.

BMS: The BMS model [12] introduces a novel Bayesian approach to automated model discovery,
aiming to find interpretable mathematical expressions from data. It employs a Markov chain Monte
Carlo (MCMC) algorithm to navigate the space of possible models, effectively sampling from the
posterior distribution over mathematical expressions. BMS uses a maximum entropy principle
to learn a prior over expressions from a large empirical corpus, typically compiled from scientific
literature, such as Wikipedia. We use the code available at https://bitbucket.org/rguimera/
machine-scientist/. The prior file used in turbulent experiments is nv1.np5.2017-10-18 18_07_
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35.227360.dat given in the repository. For EMPS, we used prior file with nv3.np3. For chaotic
dynamics, we utilized nv3.np3, nv4.np8 and nv5.np7 corresponding to the number of variables
involved. The model parameters nsample, thin, and burnin are selected to be 100, 10, and 500
respectively for limiting the time. The operators used are the same as those in PTS.

SPL: The SPL model [42] employs a Monte Carlo tree search (MCTS) agent for traversing ex-
pression trees in pursuit of the most suitable expressions that align with the fundamental physics.
This model adeptly incorporates existing knowledge and specific constraints within its grammatical
structure, showcasing a strong capability to identify intricate expressions effectively. We utilized
the code from https://github.com/isds-neu/SymbolicPhysicsLearner. And we used the result
from Sun et al. [42] and Xu et al. [44].

2.4 Evaluation Metrics

Here, we will introduce the definitions of some key evaluation metrics:
Complexity: The number of operators in an expression. A higher complexity often suggests

a greater risk of overfitting when the expression is used in a predictive model. This concept is
consistent with the principle of Occam’s razor, which posits that, all else being equal, simpler
explanations are generally preferable to more complex ones.

Recovery Rate: The proportion of instances where SR algorithms identify symbolically equiv-
alent expressions compared to the ground truth, measured across numerous independent trials with
different random seeds. In the symbolic regression benchmark test, the found expressions must be
symbolically equivalent to the ground truth expression (validated using SymPy [74]). For symbolic
regression benchmark expressions containing constants, the constants are trimmed to two decimal
places before comparison. In chaotic dynamic discovery task, due to the presence of Gaussian noise,
an expression is considered successfully recovered if it has the same structural form as the ground
truth expression (allowing for a constant bias term).

2.5 Hardware and Environment

The experiments were performed on servers with Nvidia A100 (80GB) and Intel(R) Xeon(R)
Platinum 8380 cpus @ 2.30GHz. Note that for environments running the PTS model, a minimum
Pytorch version of 2.0.0 is required. Versions below this threshold may be incompatible with the
torch.topk operation and may result in computational issues.

3 Results

The following table shows the detailed recovery rates and time cost on the symbolic regression
benchmark problem sets and 16 chaotic dynamics.

3.1 Symbolic Regression Benchmark Problem

Table S.7, S.8, S.9, S.10, S.11, S.12 show the recovery rate and time cost on each symbolic
regression benchmark problem set.
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Table S.7: Symbolic regression results on Nguyen problem set.

Benchmark Recovery rate Time cost (s)
PTS SPL NGGP DGSR PySR PTS SPL NGGP DGSR PySR

Nguyen-1 100% 100% 100% 100% 100% 1.10 8.78 13.45 10.01 2.10
Nguyen-2 100% 100% 100% 100% 99% 1.11 7.30 18.20 8.25 2.17
Nguyen-3 100% 100% 100% 100% 100% 2.83 81.29 34.86 8.45 4.15
Nguyen-4 100% 99% 100% 100% 97% 3.31 567.06 71.65 27.16 258.13
Nguyen-5 100% 95% 99% 98% 100% 2.43 431.23 175.45 69.51 577.04
Nguyen-6 100% 100% 99% 0% 100% 2.95 64.65 122.97 7.29 1.96
Nguyen-7 100% 100% 100% 15% 100% 15.29 14.99 126.60 970.35 78.67
Nguyen-8 100% 100% 100% 100% 53% 1.12 5.59 63.27 68.88 212.03
Nguyen-9 100% 100% 100% 100% 100% 2.06 5.74 17.81 8.19 2.91
Nguyen-10 100% 100% 100% 100% 100% 2.08 53.24 45.06 79.70 4.43
Nguyen-11 100% 100% 100% 23% 100% 2.10 10.16 22.55 847.79 57.95
Nguyen-12 98% 28% 0% 0% 0% 389.74 187.90 857.18 1130.91 6933.52

Table S.8: Symbolic regression results on Nguyen-c problem set.

Benchmark Recovery rate Time cost (s)
PTS SPL NGGP DGSR PySR PTS SPL NGGP DGSR PySR

Nguyen-1c 100% 100% 76% 45% 65% 24.77 452.73 804.64 181.72 666.11
Nguyen-2c 100% 94% 16% 18% 0% 41.19 295.77 1122.97 541.87 2047.44
Nguyen-5c 100% 95% 28% 41% 85% 15.48 2178.89 8649.82 4158.69 671.19
Nguyen-8c 100% 100% 100% 90% 100% 103.62 77.89 701.43 845.45 73.60
Nguyen-9c 99% 98% 60% 0% 100% 1332.79 2001.40 21005.76 7043.42 46.42
Nguyen-10c 100% 0% 80% 9% 65% 226.26 3672.39 6653.39 6315.63 4413.90

Table S.9: Symbolic regression results on R problem set.

Benchmark Recovery rate Time cost (s)
PTS SPL NGGP DGSR PySR PTS SPL NGGP DGSR PySR

R-1 100% 0% 0% 0% 0% 21.47 1507.01 759.25 1148.08 2196.87
R-2 98% 0% 0% 0% 0% 460.96 1397.70 722.63 1091.35 2212.13
R-3 100% 0% 7% 0% 0% 84.87 1275.47 820.86 1147.61 2132.06

Table S.10: Symbolic regression results on R* problem set.

Benchmark Recovery rate Time cost (s)
PTS SPL NGGP DGSR PySR PTS SPL NGGP DGSR PySR

R*-1 100% 0% 26% 0% 0% 16.37 1296.93 880.24 1034.55 2178.47
R*-2 100% 0% 40% 0% 0% 371.57 1521.33 775.00 1059.25 1724.86
R*-3 100% 0% 95% 58% 0% 8.02 1275.47 193.51 444.13 1874.46
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Table S.11: Symbolic regression results on Livermore problem set.

Benchmark Recovery rate Time cost (s)
PTS SPL NGGP DGSR PySR PTS SPL NGGP DGSR PySR

Livermore-1 100% 94% 100% 76% 89% 12.06 56.39 77.48 895.84 29.98
Livermore-2 100% 29% 100% 100% 55% 2.48 1568.58 100.95 58.38 1378.44
Livermore-3 100% 50% 96% 100% 86% 33.18 121.77 205.71 84.68 398.74
Livermore-4 100% 61% 100% 100% 100% 15.81 661.39 29.00 42.79 6.56
Livermore-5 100% 100% 100% 0% 99% 8.42 1714.67 65.75 1060.11 131.11
Livermore-6 100% 8% 98% 100% 0% 13.82 1958.34 189.15 152.36 2063.86
Livermore-7 100% 18% 0% 0% 0% 1.16 1362.29 643.53 1140.42 36.12
Livermore-8 100% 6% 0% 0% 0% 1.16 946.12 672.93 1140.30 89.14
Livermore-9 100% 21% 79% 43% 0% 43.14 1375.24 405.70 924.97 2103.65
Livermore-10 100% 75% 5% 35% 68% 10.63 1773.06 813.33 1057.65 3418.58
Livermore-11 100% 0% 100% 18% 80% 2.07 1684.00 66.84 12.43 5028.28
Livermore-12 100% 100% 62% 100% 39% 2.07 1795.80 117.98 9.24 5396.28
Livermore-13 100% 12% 97% 98% 80% 8.26 2665.69 53.60 93.35 172.28
Livermore-14 100% 100% 99% 0% 100% 2.41 1875.82 143.00 52.13 9.92
Livermore-15 100% 0% 98% 100% 37% 122.61 2662.18 133.97 187.01 8.18
Livermore-16 100% 0% 97% 0% 7% 127.50 3700.33 184.83 786.57 216.37
Livermore-17 100% 89% 45% 64% 100% 2.07 637.18 642.14 629.29 227.37
Livermore-18 100% 18% 60% 100% 0% 72.95 1132.71 600.62 146.83 1706.93
Livermore-19 100% 89% 100% 100% 100% 2.32 2043.58 23.67 7.36 4.55
Livermore-20 100% 100% 100% 100% 17% 1.09 3003.36 14.77 14.73 16.52
Livermore-21 100% 52% 94% 100% 0% 13.18 1970.23 294.23 58.87 1944.50
Livermore-22 100% 100% 83% 32% 0% 6.15 1776.83 337.37 872.14 4.25

Table S.12: Symbolic regression results on Feynman problem set.

Benchmark Recovery rate Time cost (s)
PTS SPL NGGP DGSR PySR PTS SPL NGGP DGSR PySR

Feynman-1 100% 100% 100% 100% 100% 2.25 85.68 12.22 6.71 2.30
Feynman-2 100% 0% 99% 100% 88% 2.25 1181.64 45.09 41.25 30.54
Feynman-3 100% 100% 100% 100% 98% 2.25 88.65 11.84 2.88 40.27
Feynman-4 100% 0% 0% 0% 0% 40.08 1061.49 711.07 725.39 6074.75
Feynman-5 100% 100% 100% 95% 97% 2.25 78.55 12.44 3.08 109.72
Feynman-6 100% 0% 100% 100% 96% 2.25 1316.97 122.17 35.03 190.46
Feynman-7 100% 0% 100% 100% 73% 2.24 1301.57 69.20 15.54 93.19
Feynman-8 0% 0% 0% 0% 0% 933.74 1224.00 920.51 898.20 10694.80
Feynman-9 100% 0% 95% 55% 34% 2.27 1084.67 295.75 517.40 3359.48
Feynman-10 100% 0% 100% 100% 39% 2.26 1192.10 45.36 23.52 3267.69
Feynman-11 100% 0% 25% 100% 71% 2.26 1136.84 800.94 342.79 6531.40
Feynman-12 100% 0% 46% 95% 34% 29.06 1181.74 661.46 331.04 2475.89
Feynman-13 0% 0% 14% 10% 32% 920.71 1164.30 832.85 880.70 6402.28
Feynman-14 100% 0% 99% 100% 34% 2.26 1189.21 225.26 100.04 3404.15
Feynman-15 100% 0% 100% 100% 7% 40.84 1152.71 46.11 11.41 3736.32
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PTS

Figure S.3: PTS discovered true equation structure of Lorenz Attractor in the same time budget.

3.2 Chaotic Dynamics

Before performing on these 16 nonlinear chaotic dynamics, we first test the performance of our
algorithm on the well-known Lorenz attractor [51] and compare it with other algorithms as an
example. The equation for the Lorenz attractor is given below.

9x “ σpy ´ xq (11)
9y “ xpρ ´ zq ´ y (12)
9z “ xy ´ βz (13)

We set the candidate binary operators as `, ´, ˆ, and ˜, while the candidate unary operators
were sin, cos, exp, log, abs, sign, tanh, cosh. We simulated and generated trajectory samples of the
Lorenz attractor, incorporating 1% Gaussian noise. We generated 1000 training sample points using
the default initial state of the Lorenz attractor from the dysts library. Subsequently, we changed
the initial state to p1, 1, 1qJ and regenerated 1000 test sample points for evaluation purposes. We
applied symbolic regression using PTS, BMS [12], PySR [50], and NGGP [45] to the synthesized
data, and the time is limited to around 30 seconds by limiting their hyperparameters. As depicted
in Fig. S.3, employing the same operator set and time constraint, our model successfully identified
the equation structure of the Lorenz attractor.

Table S.13 shows the average recovery rate and time cost on other 16 chaotic dynamics. Our
PTS model is capable of identifying the underlying control equations within chaotic dynamics data
more rapidly and accurately under a given time budget. Generally speaking, the ability to precisely
recover the most complex symbolic expressions within a system of equations determines the overall
effectiveness of the system’s reconstruction. We have observed that these challenging expressions
can be discovered by the PTS with a significantly higher recovery rate, demonstrating the superiority
of our method.
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Table S.13: Recovery rate and average time cost of chaotic dynamics task

Chaotic Dynamic Variant Recovery Rate (%) Avg. Time Cost

PTS BMS PySR NGGP PTS BMS PySR NGGP

DequanLi
9x 56.0 44.4 2.0 4.0 106.43 91.35 91.24 92.94
9y 100.0 72.2 92.0 12.0 79.61 91.46 92.43 92.9
9z 94.0 70.4 100.0 2.0 78.04 91.31 84.96 93.33

Duffing
9x 100.0 90.9 100.0 100.0 38.83 44.55 70.32 93.27
9y 58.0 9.1 8.0 0.0 42.78 91.45 93.49 96.13
9z 100.0 65.5 100.0 50.0 51.84 58.89 85.38 91.69

Finance
9x 100.0 68.5 24.0 6.0 28.5 91.37 104.8 94.28
9y 100.0 64.8 62.0 4.0 29.25 91.39 96.57 92.9
9z 100.0 66.7 100.0 82.0 32.28 90.95 86.97 93.1

Brusselator
9x 52.0 14.5 0.0 0.0 63.81 91.58 100.67 97.52
9y 96.0 52.7 50.0 2.0 48.71 91.38 97.24 96.97
9z 100.0 58.2 100.0 46.0 55.89 81.86 88.7 94.39

FitzHughNagumo
9x 68.0 0.0 0.0 2.0 47.55 91.24 111.04 94.38
9y 100.0 81.5 100.0 54.0 27.88 91.25 91.33 93.81
9z 100.0 79.6 100.0 94.0 30.73 44.99 77.03 93.16

GenesioTesi
9x 100.0 96.4 100.0 100.0 29.19 39.18 71.51 95.11
9y 100.0 96.4 100.0 100.0 29.29 43.55 72.8 94.1
9z 100.0 0.0 8.0 0.0 39.84 91.0 97.48 95.87

Hadley
9x 30.0 0.0 8.0 0.0 32.61 91.56 107.73 94.68
9y 14.0 7.5 58.0 0.0 24.02 91.39 94.34 94.11
9z 100.0 35.8 80.0 2.0 33.78 92.69 89.35 94.67

HyperJha

9w 96.0 74.5 100.0 18.0 31.17 91.2 86.57 91.82
9x 100.0 64.3 100.0 40.0 34.38 90.86 83.18 92.26
9y 68.0 33.9 20.0 0.0 49.04 91.26 92.56 92.57
9z 100.0 69.1 100.0 18.0 29.28 91.58 89.17 92.72

HyperLorenz

9w 94.0 60.7 100.0 30.0 34.28 91.46 82.69 92.42
9x 96.0 82.1 100.0 42.0 36.52 91.4 84.33 92.36
9y 78.0 66.1 32.0 4.0 52.54 91.63 91.61 92.85
9z 100.0 62.5 100.0 20.0 29.44 91.65 85.81 90.81

HyperPang

9w 100.0 69.1 100.0 82.0 29.66 90.76 86.75 91.89
9x 100.0 69.1 100.0 52.0 31.43 91.4 82.49 92.73
9y 100.0 56.4 16.0 0.0 37.72 91.81 87.71 93.34
9z 100.0 56.4 100.0 22.0 32.0 92.71 86.67 92.37

KawczynskiStrizhak
9x 52.0 0.0 0.0 0.0 32.34 91.51 110.81 94.53
9y 100.0 89.1 40.0 12.0 28.07 91.54 97.16 94.27
9z 100.0 79.6 100.0 76.0 24.4 91.23 90.61 93.63

Laser
9x 98.0 34.5 16.0 0.0 32.33 91.61 94.95 94.18
9y 100.0 32.7 92.0 2.0 28.44 91.68 90.94 93.88
9z 100.0 63.6 76.0 6.0 30.62 91.53 102.34 93.53

NewtonLiepnik
9x 100.0 69.6 28.0 0.0 39.41 91.25 98.09 94.6
9y 98.0 48.2 54.0 2.0 34.53 91.41 94.87 95.67
9z 100.0 51.8 100.0 0.0 29.51 91.32 89.34 94.84

Rucklidge
9x 80.0 29.6 14.0 2.0 49.62 91.01 105.27 94.81
9y 96.0 96.3 100.0 100.0 27.01 42.79 74.24 92.06
9z 100.0 68.5 90.0 22.0 27.74 91.48 93.51 93.18

ShimizuMorioka
9x 100.0 92.7 100.0 100.0 29.38 41.1 70.33 94.3
9y 100.0 34.5 70.0 6.0 37.19 91.23 96.18 93.89
9z 100.0 65.5 100.0 8.0 24.31 91.98 94.63 94.01

SprottJerk
9x 100.0 94.3 100.0 100.0 24.98 41.22 72.13 92.72
9y 100.0 100.0 100.0 100.0 23.88 44.13 72.81 93.69
9z 100.0 5.7 0.0 0.0 24.19 91.15 103.6 92.85
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