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The discovery of new superconducting materials, particularly those exhibiting high critical tem-
perature (Tc), has been a vibrant area of study within the field of condensed matter physics. Con-
ventional approaches primarily rely on physical intuition to search for potential superconductors
within the existing databases. However, the known materials only scratch the surface of the exten-
sive array of possibilities within the realm of materials. Here, we develop an AI search engine that
integrates deep model pre-training and fine-tuning techniques, diffusion models, and physics-based
approaches (e.g., first-principles electronic structure calculation) for discovery of high-Tc supercon-
ductors. Utilizing this AI search engine, we have obtained 74 dynamically stable materials with
critical temperatures predicted by the AI model to be Tc ≥ 15 K based on a very small set of sam-
ples. Notably, these materials are not contained in any existing dataset. Furthermore, we analyze
trends in our dataset and individual materials including B4CN3 and B5CN2 whose Tcs are 24.08
K and 15.93 K, respectively. We demonstrate that AI technique can discover a set of new high-
Tc superconductors, outline its potential for accelerating discovery of the materials with targeted
properties.

Introduction. Superconducting materials have numer-
ous applications in modern society since it was dis-
covered [1], particularly in magnetic resonance imag-
ing [2], fueling advances in nuclear fusion technology [3].
Superconductor-based devices are demonstrating poten-
tial for achieving scalable quantum information proces-
sors, advanced sensors, and efficient communication sys-
tems [4–6]. Many of these devices use conventional
Bardeen-Cooper-Schrieffer (BCS) superconductors [7],
which demand costly helium-based cooling. Hence,
searching superconductors with high superconducting
critical temperature (Tc) is vital for propelling techno-
logical progress in these dynamic areas.

Over the past decade, substantial advancements have
been achieved in searching high-Tc superconductors. For
example, a superconducting transition with Tc ∼ 36
K was experimentally observed in high-pressured Scan-
dium, which is the highest record for elemental super-
conductors [8]. The discovery of superconductivity in bi-
layer La3Ni2O7 under pressure raises superconducting Tc
of nickelates to the liquid-nitrogen temperature zone [9].
And lots of theoretical work predicted superconductiv-
ity in hydrides [10–15], where superconductivity in H3S
under pressure was experimentally confirmed [16].

Recently, machine learning-based methods have be-
come increasingly popular in searching potential high-Tc
superconductors [17–22]. Wines et al [23]. have em-
ployed crystal diffusion variational auto-encoder (CD-
VAE) [24] to generate data based on the JARVIS-DFT
database [25], subsequently employing the atomistic line
graph neural network (ALIGNN) [26] for Tc forecasting.
Using high-throughput density functional theory (DFT)

calculations, 34 dynamically stable 2D superconductors
with Tc ≥ 5 K from over 1000 candidates in the JARVIS-
DFT database were identified [18]. Moreover, Choud-
hary and Garrity [17] leveraged electron-phonon coupling
(EPC) calculations, assistanted by deep-learning models
for efficient prediction of superconducting properties, to
identify 105 conventional superconductors with Tc ≥ 5
K from a pre-screened set of 1736 materials. While nu-
merous studies have highlighted the application of ma-
chine learning in this field, these approaches primarily
rely on chemical formulas or searches based on the exist-
ing datasets. They often lack the intricate atomic struc-
ture details crucial for understanding superconducting
behavior and are limited in exploring crystal materials
beyond known databases. To truly advance the discov-
ery of new superconductors, it is essential to incorporate
detailed structural information and broaden the scope
beyond existing data. So far, the conventional meth-
ods (such as elemental substitution or physical insight)
have limited success in finding new high-Tc superconduc-
tors among the existing data. The rise of Al technology
brings a transformative approach, potentially reshaping
our path to solving this challenge.

In this work, we developed an AI search engine to ex-
plore high-Tc BCS superconductors, integrating diffusion
model, formation energy prediction model, ALIGNN,
pre-training and fine-tuning technique, atom docking
based on pre-trained model, active learning technique,
and physics-based methods (e.g., first-principles elec-
tronic structure calculations), and meanwhile sufficiently
incorporating detailed structural information. Lever-
aging a limited dataset of high-Tc BCS superconduc-
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FIG. 1. (a). The AI search engine workflow overview.
AI-accelerated discovery of high-Tc superconductors includes
generative model for predicting crystal structures, pre-trained
model for superconductivity classification, formation energy
prediction model, screening model for superconducting tran-
sition temperature prediction, and validation using DFT cal-
culation. (b). Symmetry-constrained crystal generation
model. The generation of superconducting crystals defines
two Markov processes: the black arrows represent the gradual
addition of noise to a BCS superconducting crystal, resulting
in a random unit cell, while the red arrows indicate the grad-
ual denoising from a prior atomic distribution to generate the
original superconducting crystal structure.

tors (105 superconductors with Tc ≥ 5 K [17]), we have
obtained 74 dynamically stable materials exhibiting crit-
ical temperatures predicted by the AI model to be Tc ≥
15 K. Furthermore, we analyze trends in our results, fo-
cusing on specific materials such as B4CN3 and B5CN2,
with Tc of 24.08 K and 15.93 K, respectively. Our AI
search engine stands out for its unique capability to ob-
tain crystal structures absent from the existing material
databases, effectively pioneering new avenues in the quest
for high-Tc superconductors. Its adaptability allows itself
to be tailored for a diverse array of functional materials,
each with specific desired properties, thereby greatly ex-
panding its utility across the field of materials science.

Overview. Our AI search engine utilizes multiple AI
methods and DFT calculations (Fig 1(a)) for generat-
ing and screening high-Tc superconductors. Specifically,
inspired by the DiffCSP model [27], we constructed a
symmetry-constrained superconducting crystal genera-
tion model, based on diffusion generative models [28] and

equivalent graph neural networks [29]. This model gen-
erates new superconducting structures. We also built a
superconducting classification model using pre-training
techniques [30], graph auto-encoder architectures [31],
and optimal transport theory [32] to determine whether
or not the generated crystals exhibit superconducting
properties. To further assess the stability of the mate-
rials, we retrained a formation energy prediction model
based on the MEGNET architecture [33] with improve-
ments. Next, we used ALIGNN [26] to predict the su-
perconducting transition temperatures of these materials
and screened for high-Tc superconducting candidates. Fi-
nally, for the top-5 candidates, We validated our predic-
tions with convergence tests and verified superconducting
transition temperatures using DFT calculation. Adopt-
ing active learning, we incorporated the discovered su-
perconductors into training set.
Symmetry-constrained crystal generation model. In

crystal structures (Fig 1(b)), the atoms exhibit a peri-
odic distribution, with the smallest repeating unit be-
ing the unit cell, denoted by M, which can be repre-
sented as M = (A,X,L). Here, A = [a1,a2, ...,aN ] ∈
Rh×N denotes the atomic types within the unit cell,
X = [x1,x2, ...,xN ] ∈ R3×N represents the Cartesian
coordinates of each atom, and L = [l1, l2, l3] ∈ R3×3 is
the lattice matrix used to describe the periodicity of the
crystal. We employed an ab initio crystal generation ap-
proach to generate superconducting crystal structures.
Specifically, this involves generating a superconducting
crystal M from a given number of atoms N within the
unit cell, with a sampling distribution defined as:

p(M, N) = p(N)p(M|N), (1)

where N remains unchanged during the generation pro-
cess. The distribution p(N) is calculated from the
training set, while p(M|N) is generated based on
the model. Standard denoising diffusion probabilistic
model (DDPM) [28] can be used to generate L and A,
and their loss functions take the same form as:

LL/A = Eϵ∼N (0,I)[∥ϵ− ϵ̂L/A(Mt, t)∥22]. (2)

The denoising terms ϵ̂L(Mt, t) and ϵ̂A(Mt, t) are pre-
dicted by an equivalent denoising graph neural networks
(short as EDGNN Fig 1(b)), and N (0, I) represents a
standard normal distribution. Given the periodicity of
X, it is generated using a score-matching based frame-
work [34]. Details are in the supplementary material
(SM). Utilizing 105 BCS superconductors [17], we trained
the model to generate novel crystal structures, exclud-
ing those in the training set and with overlapping com-
positions in the Materials Project (MP) database [35].
Since generative models often produce non-ground-state
structures, we performed geometry optimization using
the neural networks atomic simulation environment [36]
and L-BFGS algorithm [37] to refine the generated struc-
tures.
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FIG. 2. Superconducting classification model: (a) High-
throughput screening process for pre-training and fine-tuning
data. (b) Graph auto-encoder architecture based on a graph
neural network. Formation energy prediction model: (c)
Training data sources. (d) Crystal data representation us-
ing atomic graphs with an 8 Å cutoff radius. (e) Interaction
of node, edge, and global state representations in the model’s
architecture.

Superconducting classification model. Initially, we
extract 144,595 crystal data entries from the MP
database [35]. We first classified the materials into two
groups: magnetic and non-magnetic. Subsequently, we
refined the non-magnetic category into conductors, semi-
conductors, and insulators. Then, we designated insu-
lators and magnetic materials as negative samples, and
conductors and semiconductors as positive samples, as il-
lustrated in Fig 2a. The model is based on a pre-trained
graph neural network (GNN) that utilizes material crys-
tal structure information to predict materials [31, 38],
consists of a graph convolutional network encoder and
a decoder that reconstructs the graph features based on
optimal transport theory (see Fig 2b and SM). To ob-
tain hidden layer representations related to supercon-
ductivity, we pre-trained the model using the positive
samples. During the fine-tuning stage, we employed the
pre-trained encoder and used up-sampling techniques to
balance the number of the BCS superconductors and
negative samples for binary classification model. Sub-
sequently, we obtained the classifier model that achieved
a discrimination success rate of 99.04% for the 105 BCS

superconductors. Utilizing this model , we evaluated the
candidate structures generated by the generative model.
Formation energy prediction model. To further as-

sess the stability of potential superconductors, we pre-
dict the formation energy of crystals as an indicator of
their stability. The AI algorithms like CGCNN [31] and
SchNet [39], while fast, lack the required precision for for-
mation energy predictions. Inspired by MEGNET [33],
we trained the model using 380,000 crystal structures
from GNoME [40] and 60,000 crystal structures [35].
Next, we increased the cutoff radius for constructing
atomic graphs from 5Å to 8Å, enabling the model to
capture more long-range atomic interactions to more ac-
curately simulate atomic interactions. Recognizing the
direct correlation between crystal formation energy and
atomic bonding strength, we have incorporated eight new
atomic features into our prediction model. This enhance-
ment offers a more comprehensive representation of crys-
tal data, as elaborated in the SM. The original MEG-
NET benchmark reported a mean absolute error (MAE)
of 28 meV per atom, while our improved model achieved
an MAE of 21 meV per atom. Since we are particu-
larly interested in high-Tc superconducting materials, we
used ALIGNN [26] to predict the superconducting tran-
sition temperatures of these materials and applied a 15
K threshold, resulting in top-5 candidate high-Tc super-
conductors.
Predicted high-Tc materials. By performing the DFT

calculations, we studied the electronic structures, phonon
properties, and EPC of B5CN2 and B4CN3 (See SM for
crystal structures and additional results.). In Fig. 3, we
show the band structure of B5CN2 and B4CN3 (5 GPa).
The results of DFT calculations and Wannier projec-
tion show good consistence and suggest that B5CN2 and
B4CN3 (5 GPa) are metallic. The atomic-orbital resolved
density of states (DOS) shows that the 2p orbitals of B,
C, and N atoms mainly contribute the Fermi surfaces.
Next, we investigate the dynamical stability of B5CN2

and B4CN3. At ambient pressure, we find that B5CN2

is dynamically stable, while B4CN3 shows a maximum
imaginary-frequency phonon of ∼ −7.7 meV along the
R-Z path. By applying pressure of 5 GPa, the imag-
inary phonons of B4CN3 disappear. Hence, we show
the phonon spectrum of B5CN2 and B4CN3 (5 GPa) in
Fig. 4(a) and (c) and further study the EPC of these two
materials. The calculated Eliashberg spectral function
α2F (ω) and accumulated EPC constant λ(ω) are exhib-
ited in Fig. 4(b) and (d). And the mode-resolved λqν is
added in the phonon spectrum. The EPC constants λ
of B5CN2 and B4CN3 (5 GPa) are integrated to be 0.61
and 0.72, respectively. Using the McMillan-Allen-Dynes
formula [41, 42]

Tc =
ωlog
1.2

exp[
−1.04(1 + λ)

λ(1− 0.62µ∗)− µ∗ ], (3)

the superconducting Tc of B5CN2 and B4CN3 (5 GPa) is
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FIG. 3. (a)-(b) Electronic structure and DOS of B5CN2 at
ambient pressure. (c)-(d) Electronic structure and DOS of
B4CN3 under 5 GPa. The blue soild lines and red circles rep-
resent the bands obtained by DFT and Wannier projection,
respectively. The Fermi level is set to be zero.

respectively estimated to be 15.93 K and 24.08 K when
the Coulomb pseudopotential µ∗ is set to be 0.1.

Discussion. Recently, several studies have utilized gen-
erative models to explore high-Tc superconductors [17,
18, 20, 23]. Wines et al. [23] employed CDVAE to gener-
ate data on the JARVES-DFT dataset [25], subsequently
employing the ALIGNN [26] for Tc forecasting. Com-
pared to existing methods, our proposed AI search en-
gine has seen improvements in three aspects. Firstly, our
method is capable of effective generation based on a few
positive samples (i.e., 105 samples with Tc ≥5 K). Unlike
CDVAE [24], which randomly generates chemical formu-
las before predicting structures, our approach directly
generates structures. By directly generating structural
configurations, our method adeptly navigates the spa-
tial intricacies of superconductors, facilitating the gene-
sis of plausible chemical entities. Secondly, we have inte-
grated a sophisticated post-processing phase employing
the DPA-2 model [43] for atom docking. This step metic-
ulously circumvents atomic clashes, refines bond lengths
to more rational values, and guarantees the equilibrium
of forces exerted on each atomic constituent. Existing
methods often predict superconducting transition tem-
peratures without aforehand confirming the materials’
superconductivity, which is problematic. We address this
by introducing a superconducting classification model.
We improved the formation energy prediction model un-
der GNoME [40], increasing its precision from 28 meV
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FIG. 4. (a)-(b) Phonon spectrum with a color representation
of λqν , Eliashberg spectral function α2F (ω), and accumulated
EPC constant λ(ω) for B5CN2 at ambient pressure under 5
GPa. (c)-(d) Phonon spectrum with a color representation of
λqν , Eliashberg spectral function α2F (ω), and accumulated
EPC constant λ(ω) for B4CN3 at ambient pressure under 5
GPa. The scale of α2F (ω) is omitted.

to 21 meV. Lastly, active learning progressively expands
the chemical space of high-Tc superconducting materials
in iterative reinforcement generative learning. These re-
finements enhance our method’s effectiveness and estab-
lish a new standard for exploring and predicting high-Tc
superconductors.

In conclusion, our proposed AI search engine integrates
a suite of advanced methodologies, including generative
model, formation energy prediction model, pre-training
and fine-tuning strategy, ALIGNN, and first-principles
electronic structure calculations. This AI search engine
has not only predicted 74 superconducting material can-
didates with Tc >15 K based on a modest set of positive
samples (105 samples with Tc ≥5 K), but also identi-
fied two ideal high-Tc candidates: B5CN2 (Tc=15.93 K)
and B4CN3 (Tc=24.08 K). Notably, this engine is capa-
ble of discovering crystal structures that are not yet doc-
umented in existing material dataset, thereby opening
up new horizons in the search for high-Tc superconduc-
tors. Moreover, the AI search engine’s versatility allows
it to be adapted for exploring a wide range of functional
materials with various target properties, significantly ex-
panding its potential applications in materials science.
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CALCULATION METHOD

The first-principle calculations were performed by
QUANTUM-ESPRESSO package [44]. The generalized
gradient approximation of Perdew-Burke-Ernzerhof for-
mula [45] and the optimized norm-conserving Vander-
bilt pseudopotentials [51] were used. We set the kinetic
energy and the charge density cutoff to be 80 Ry and
320 Ry, respectively. An unshifted 12×12×6 k-points
grid was used in the self-consistent calculations. The
Methfessel-Paxton smearing method [52] with a width of
0.02 Ry was set for the Fermi surface broadening. The
dynamical matrices and the perturbation potentials were
calculated on a Γ-centered 4×4×2 q-points grid based on
the density functional perturbation theory [53].

The maximally localized Wannier functions (ML-
WFs) [54] were constructed on a 4×4×2 k-points grid of
the Brillouin zone. The MLWFs of B5CN2 and B4CN3

include the 2p orbitals of B, C, and N atoms. We used
EPW package [55] to perform electron-phonon coupling
(EPC) calculations. The EPC constant λ was deter-
mined through fine electron (72×72×36) and phonon
(24×24×12) grids. And the smearing widths of electron
and phonon Dirac δ functions are 0.1 eV and 0.5 eV,
respectively.

The mode and wavevecter-dependent coupling λqν
reads:

λqν =
2

ℏN(0)Nk

∑
nmk

1

ωqν
|gnmk,qν |

2
δ(ϵnk)δ(ϵ

m
k+q). (4)

N(0) is the density of states (DOS) of electrons at the
Fermi level. Nk is the total number of k points in the
fine k-mesh. ωqν is the phonon frequency and gnmk,qν is the
EPC matrix element. (n, m) and ν denote the indices
of energy bands and phonon mode, respectively. ϵnk and
ϵmk+q are the eigenvalues of the Kohn-Sham orbitals with
respect to the Fermi level.

The EPC constant λ was determined by the summa-
tion of λqν over the first Brillouin zone, or the integration
of the Eliahberg spectral function α2F (ω) [41, 42],

λ =
1

Nq

∑
qν

λqν = 2

∫
α2F (ω)

ω
dω, (5)

where Nq represents the total number of q points in the
fine q mesh. The Eliashberg spectral function α2F (ω)
was calculated with:

α2F (ω) =
1

2Nq

∑
qν

λqνωqνδ(ω − ωqν). (6)

And ωlog is the logarithmic average frequency that is de-
fined as

ωlog = exp

[
2

λ

∫
dω

ω
α2F (ω)ln(ω)

]
. (7)

CRYSTAL STRUCTURE

The optimized crystal structures are shown in Fig. 5.
The crystal parameters of B5CN2 at ambient pressure
are a = 2.49497 Å, b = 2.52950 Å, c = 8.35250 Å, α =
90◦, β = 90◦, and γ = 90◦, respectively. As for B4CN3

under 5 GPa, crystal parameters are a = 2.52034 Å, b =
2.59156 Å, c = 8.13945 Å, α = 90◦, β = 98.9◦, and
γ = 90◦, respectively.

FIG. 5. Crystal structures. (a) B5CN2 at ambient pressure.
(b) B4CN3 under 5 GPa. The black lines represent the unit
cell. And the green, brown, and gray balls denote B, C, and
N atoms, respectively.

FERMI SURFACES

FIG. 6. (a) Brillouin zone and high-symmetry path of B5CN2

at ambient pressure. (c)-(d) Distributions of different orbitals
on the kz = 0 Fermi surfaces. (e)-(h) Brillouin zone and Fermi
surfaces of B4CN3 under 5 GPa.
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CANDIDATE SUPERCONDUCTORS.

The table I- II present the candidate superconduct-
ing formulas and their corresponding predicted supercon-
ducting transition stability values, obtained from our AI
search engine.

TABLE I. Candidate superconductors.

Number Materials ALIGNN Prediction Tc/K
1 B4C3N 18.3
2 B4CN3 18.6
3 B5CN2 17.9
4 ReN9 18.9
5 T i(ReN2)3 15.7
6 T iN9 18.6
7 T iReN8 18.3
8 ZrBN2 15.6
9 B3C2N3 19.5
10 B3C2N4 19.6
11 B3C3N3 19.2
12 B3CN4 18.4
13 B3CN5 18.2
14 B3N5 17.8
15 B3N6 17.9
16 B4C2N3 18.7
17 B4CN2 17.9
18 B4CN4 18.2
19 B4N5 17.7
20 B5C2N2 18.2
21 B5N3 16.9
22 B5N4 17.5
23 B6CN2 16.3
24 B6N2 16.4
25 B6N3 15.9
26 Eu2C3N8 19.2
27 Eu2CN10 20.1
28 Eu2N11 19.5
29 Eu2Re2C2N7 17.4
30 Eu2Re2CN8 17.6
31 Eu2Re2N9 18.4
32 Eu2Re3C2N6 16.0
33 Eu2Re3CN7 16.1
34 Eu2ReC2N8 19.1

SYMMETRY-CONSTRAINED CRYSTAL
GENERATION MODEL DETAIL

Equivariant denoising model

Any atom in the crystal can be expressed by its Carte-
sian coordinates and type as {(a′

i,x
′
i)|a′

i = ai,x
′
i =

xi + Lk,∀k ∈ Z3×1}. There is a relationship between
Cartesian coordinates and fractional coordinates given
by x =

∑3
i=1 fili. The following generation process em-

ploys the fractional coordinate system M = (A,F ,L).
Given the periodicity of F , it is generated using a score-
matching (SM) based framework [34]. and its loss func-
tion is:

LF = EFt∼qt
[
λt∥∇Ft

log q(Ft|F0)− ϵ̂F (Mt, t)∥22
]
. (8)

TABLE II. Candidate superconductors.

Number Materials ALIGNN Prediction Tc/K
35 Eu2ReC3N7 17.9
36 Eu2ReCN9 19.2
37 Eu2ReN10 19.5
38 Eu2T iCN9 19.1
39 Eu3C2N8 19.5
40 Eu3CN9 19.9
41 Eu3N10 19.3
42 Eu3Re2CN7 17.5
43 Eu3Re2N8 18.7
44 Eu3Re3N7 15.0
45 Eu3ReCN8 19.0
46 Eu3ReN9 18.7
47 Eu4CN8 19.2
48 Eu4N9 19.1
49 Eu4ReCN7 18.9
50 EuTiCN10 17.4
51 EuTiRe2CN8 18.1
52 Li2CO 15.4
53 Np2T i2C4N5 15.3
54 Np2T iC4N6 16.9
55 Np2T iC6N4 16.3
56 Np3C4N6 17.7
57 Np3C6N4 17.3
58 Np3T iC2N7 17.6
59 Np3T iC3N6 16.6
60 Np3T iC4N5 16.0
61 Np3T iC5N4 15.9
62 Np4C4N5 17.3
63 Np4C5N4 17.1
64 T i2CN8 16.1
65 T i2N7 16.6
66 T i2N8 16.3
67 T i2Re2CN7 16.7
68 T i2ReC2N6 15.1
69 T i2ReCN7 15.5
70 T i2ReCN8 16.6
71 T i2ReN6 16.4
72 T iRe2N6 16.2
73 T iReBN6 15.4
74 V2Ru4 15.1

Similar with DiffCSP [27], the distribution qt here uses
the wrapped normal(WN) [46] distribution. where λt
is approximated via Monte-Carlo sampling. In this
work, we employed EGNN [29] as an equivariant de-
noising model. The superconducting unit cell structure
is represented as an atomic graph, where the encoding
of atomic types and the diffusion time step t is pro-
cessed through an MLP, serving as the model’s input:

h
(0)
i = MLP(fatom(ai), fpos(t)). The representation of

the i-th node at the s-th layer is denoted as h
(s)
i .

h
(s)
i = h

(s−1)
i + φh(h

(s−1)
i ,m

(s)
i ). (9)

φh denotes MLP, andm
(s)
i represents the aggregated rep-

resentation from all nodes to the i-th node.

m
(s)
i =

N∑
j=1

m
(s)
ij , (10)
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the representation of the edge ij at layer s is given by

m
(s)
ij = φm(h

(s−1)
i ,h

(s−1)
j ,L⊤L, ψFT(fj − fi)). (11)

The term L⊤L ensures that the input is invariant under
O(3) transformations. The edge vector (fj−fi) is trans-
formed using the Fourier transform ψFT : (−1, 1)3 →
[−1, 1]3×K , which guarantees the translational invariance
of the edge vector. The representation of the final layer
nodes predicts the atomic type noise ϵ̂A, the lattice ma-
trix noise ϵ̂L, and the fractional coordinate score ϵ̂F using
different MLPs.

Algorithms for Training and Sampling

Algorithm 1 provides an overview of the forward dif-
fusion process and the training procedure for the de-
noising model ϕ. Meanwhile, Algorithm 2 details the
backward sampling process. These algorithms are de-
signed to preserve symmetries, provided that ϕ is care-
fully constructed. Specifically, the predictor-corrector
sampler [50] is employed to sample F0. In Algorithm 2,
Line 8 represents the predictor step, while Lines 10-11
correspond to the corrector steps.

Algorithm 1 Training procedure of symmetry-
constrained crystal generation model.

1: Input: lattice matrix L0, atom types A0, atom number
N in cell,fractional coordinates F0, denoising model ϕ,
and the number of sampling steps T .

2: Sample ϵL ∼ N (0, I),ϵA ∼ N (0, I),ϵF ∼ N (0, I) and
t ∼ U(1, T ).

3: Lt ←
√
ᾱtL0 +

√
1− ᾱtϵL

4: At ←
√
ᾱtA0 +

√
1− ᾱtϵA

5: Ft ← w(F0 + σtϵF )
6: ϵ̂L, ϵ̂A, ϵ̂F ← ϕ(Lt,Ft,At, N, t)
7: LL ← ∥ϵL − ϵ̂L∥22
8: LA ← ∥ϵA − ϵ̂A∥22
9: LF ← λt∥∇Ft log q(Ft|F0)− ϵ̂F ∥22

10: Minimize LL + LA + LF

Algorithm 2 Sampling procedure of symmetry-
constrained crystal generation model.

1: Input: atom number N in cell, denoising model ϕ, num-
ber of sampling steps T , step size of Langevin dynamics
γ.

2: Sample LT ∼ N (0, I),AT ∼ N (0, I),FT ∼ U(0, 1).
3: for t← T, · · · , 1 do
4: Sample ϵL, ϵA, ϵF , ϵ′F ∼ N (0, I)
5: ϵ̂L, ϵ̂A, ϵ̂F ← ϕ(Lt,Ft,At, N, t).

6: Lt−1 ← 1√
αt

(Lt − βt√
1−ᾱt

ϵ̂L) +
√

βt · 1−ᾱt−1

1−ᾱt
ϵL.

7: At−1 ← 1√
αt

(At − βt√
1−ᾱt

ϵ̂A) +
√

βt · 1−ᾱt−1

1−ᾱt
ϵA.

8: Ft− 1
2
← w(Ft + (σ2

t − σ2
t−1)ϵ̂F +

σt−1

√
σ2
t−σ2

t−1

σt
ϵF )

9: , ϵ̂F ← ϕ(Lt−1,Ft− 1
2
,A, t− 1).

10: dt ← γσ2
t−1/σ

2
1

11: Ft−1 ← w(Ft− 1
2
+ dtϵ̂F +

√
2dtϵ

′
F ).

12: end for
13: Return L0,A0,F0.

Hyper-parameters and training details

In this section, we detail the training process of the
superconducting generative model. First, we perform an
up-sampling operation on 105 BCS superconducting crys-
tals, replicating the training dataset 100 times to create
the superconductors dataset. We utilize a model archi-
tecture with 6 layers and 512 hidden units. The dimen-
sion of the Fourier embedding is set to k = 256. A cosine
scheduler with s = 0.008 is applied to control the vari-
ance in the DDPM process on Lt, and an exponential
scheduler with σ1 = 0.005 and σT = 0.5 is used to man-
age the noise scale in the score-matching process on Ft.
The diffusion step is set to T = 1000. Our model is
trained for 1000 epochs. For ab initio generation, we ap-
ply a scaling factor of γ = 5× 10−6. The model training
was conducted on a GeForce RTX 3090 GPU.

SUPERCONDUCTING CLASSIFICATION
MODEL

Model architecture

We developed a superconductor classification model in-
spired by MatAltMag [38]. We define the graph represen-
tation G(V,U,X) to encapsulate crystal structure infor-
mation, where V represents the set of nodes, U the set of
edges, and X the set of features. In this representation,
atoms in the crystal structure are depicted as nodes vi,
where i = 1, . . . , |V |. Due to the consideration of periodic
boundary conditions, equivalent nodes are merged, re-
sulting in a set of irreducible nodes. For each node vi, we
identify its neighboring nodes vj , where j = 1, . . . , |Ni|,
and Ni denotes the set of neighbors of node vi. The con-
nections between nodes vi and vj are represented by the
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edges u(i,j)k , where k denotes the number of bonds be-
tween the nodes. The initial features of each node vi are

denoted by
{
h
(0)
i

}|V |
i=1

and are derived through one-hot
encoding based on the atomic sequence in the crystal
structure. The neighbor node features for node vi are

represented as H
(0)
Ni

. Each edge u(i,j)k ∈ U is associated
with a feature vector u(i,j)k , corresponding to the k-th
bond between nodes vi and vj . Finally, each node vi ∈ V
is represented by a feature vector hi ∈ X, which encodes
the attributes of the atom corresponding to that node.

The encoder maps the input crystal structure infor-
mation to a high-dimensional matrix, using n convo-
lutional layers. In each layer t, the node feature vec-

tor h
(t)
i is updated through the convolution function

h
(t+1)
i = Conv

(
h
(t)
i , h

(t)
j , u(i,j)k

)
. The graph convolution

function g iteratively refines the feature vector hi, feed-
ing the output from one step as input to the next. The
structure and length of hi remain consistent across steps.
At each step t, the concatenated neighbor vector is de-

fined as z
(t)
(i,j)k

= h
(t)
i ⊕ h

(t)
j ⊕ u(i,j)k . The feature update

is then performed via the convolution operation:

h
(t+1)
i = h

(t)
i +

∑
vj∈Ni,vm∈Mi,k

σ
(
z
(t)
(i,j)k

W
(t)
f + b

(t)
f

)
⊙ g

(
z
(t)
(i,j)k

W (t)
s + h

(t)
i,mW

(t)
m + b(t)s

)
, (12)

where ⊙ represents element-wise multiplication, and

σ is the sigmoid activation function. The term W
(t)
m

accounts for the importance of magnetic atoms, crucial
for superconducting properties. Residual connections via

h
(t)
i are included to facilitate neural network training.
The decoder, denoted by ψ, reconstructs the input

graph representation of a crystal from its embeddings.
It consists of two main components: node feature recon-
struction (ψs) and adjacent node feature reconstruction
(ψp), with ψ defined as ψ = (ψp + ψs). Node features

are reconstructed using ψs = MLPs
(
h
(t)
i

)
, where MLP

stands for a multilayer perceptron. The decoder block
architecture follows the design in [49]. We utilize an n-
hop neighboring Wasserstein decoder for graph feature
reconstruction. First, we obtain the initial node features{
h
(0)
i , H

(0)
Ni

}
. For each node vi ∈ V , the GNN layer in

the encoder updates the node representation h
(t+1)
i by ag-

gregating information from h
(t)
i and its neighbors H

(t)
Ni

,

following the rule h
(t+1)
i = ϕ(t)

(
h
(t)
i , H

(t)
Ni

)
. Here, H

(t)
Ni

is assembled based on node adjacency. The network is
trained by:

argmin
ϕ,ψ

∑
vi∈V

L
(
h
(t)
i , H

(t)
Ni
, ψ

(
h
(t+1)
i , H

(t+1)
Ni

))
, (13)

where L(·, ·) denotes the reconstruction loss over 0 ≤ t <
n. More detailed information can be found in MatAlt-

Mag [38]. The classifier model is built by adding a pool-
ing layer and a softmax module to the encoder of the
pre-trained model. The pooling layer aggregates the em-
beddings from the encoder into an overall feature vector

hg, expressed as hg = Pool(h
(0)
0 , h

(0)
1 , . . . , h

(0)
N , . . . , h

(n)
N ),

where n is the number of convolutional layers and N is
the number of nodes in the graph. The softmax module
then outputs a probability in the range [0, 1], indicating
the likelihood that a given material is superconducting.

Visualization of superconducting classification model

Initially, the crystal structures undergo encoding
through the Encode 12, yielding the feature represen-
tation of the final layer. Subsequently, the t-distributed
stochastic neighbor embedding (t-SNE) method is em-
ployed for dimensionality reduction to render the visual-
ization. Fig. 7 displays the visualization of the supercon-
ductivity classification model.

Hyper-parameters and Training Details

Below are the hyperparameters used for the pre-
training and fine-tuning of the superconductor classifi-
cation model.

TABLE III. Hyperparameter value

Hyperparameter Auto-encoder Classifier
Epochs 10 500
Learning rate 1.0e-3 1.0e-3
convolution layer 6 6
Batch size 128 128
Hidden dimension 512 512
Sample size 10 -
Radius 20 20
Drop rate 0.0 0.25

FORMATION ENERGY PREDICTION MODEL

Model architecture

Let V , E, and u represent the node, edge, and global
state attributes of atoms in a crystal, respectively. vi
denotes the attribute vector of the i-th atom , and V
is the set of all vi. The edges between atoms in the
crystal are defined based on the geometric distance be-
tween atoms being less than a specified threshold (8Å),
with eij representing the edge attribute vector between
atom i and atom j, and E being the set of all edges
eij . The process of updating the graph from the input
graph Gl = (El,V l,ul) to the output graph Gl+1 =
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FIG. 7. Visualization of superconducting classification model.
The process of visualizing the superconducting classifica-
tion model initiates with the encoding of crystal structures
through the Encoder 12. Following this, the features from
the last layer are mapped using the t-SNE technique for di-
mensional reduction. Within this visual representation, su-
perconductors are indicated by yellow points, whereas gray
points correspond to insulators and other magnetic materi-
als.

(El+1,V l+1,ul+1) involves a series of state update oper-
ations. The update for the edge state is given by:

el+1
ij = φe(v

l
i ⊕ vlj ⊕ elij ⊕ u). (14)

Here, φe represents a multi-layer perception (MLP), and
⊕ denotes the concatenation operation. The update for
the node state is given by:

vlei =
1

Ne
i

∑
j

el+1
ij . (15)

vl+1
i = φv(v

le
i ⊕ vli ⊕ u). (16)

Ne
i represents the total number of atoms bonded to atom

i, and φv denotes a MLP. The update for the global state
is given by:

ule =
1

Ne

∑
ij

el+1
ij . (17)

ulv =
1

Nv

∑
i

vl+1
i . (18)

ul+1 = φu(u
le ⊕ ulv ⊕ u). (19)

Ne represents the total number of edges, Nv represents
the total number of atoms in the crystal, and φu de-
notes a MLP. Notably, we incorporated eight new atomic
features into the model: electronegativity, group num-
ber, covalent radius, valence electrons, first ionization en-
ergy, electron affinity, atomic orbital, and atomic volume.

These features are considered as follows: Electronega-
tivity and electron affinity impact atomic interactions
and bonding strength, thereby affecting formation en-
ergy, with higher electronegativity typically leading to
stronger bonds. Valence electrons and first ionization
energy influence how easily an atom loses or gains elec-
trons, directly impacting bond strength and formation
energy. Covalent radius and atomic volume affect bond
lengths between atoms, influencing stability and forma-
tion energy. Group number indicates an element’s reac-
tivity and bonding modes, indirectly affecting compound
formation energy. Atomic orbitals relate to formation en-
ergy indirectly by affecting chemical bond properties. All
these atomic features play a role in directly or indirectly
influencing crystal formation energy.

Absolute error

Here are the formation energy prediction errors of some
common methods, our model demonstrates strong com-
petitiveness.

TABLE IV. Formation energy prediction absolute error.

Method Absolute Error/meV
MAD [47] 930
CFID [47] 104
SchNet [39] 35
CGCNN [48] 39
MEGNET [33] 28

Ours 21

Hyper-parameters and training details

We detail the hyperparameter settings employed for
model training. The training dataset size was set to
440,000 records, while the test dataset size was set to
4,500 records. The batch size was configured to 256. The
number of training epochs was 1,000. The bond feature
dimension was established at 100. The cutoff radius was
defined as 8Å. The Gaussian centers were evenly dis-
tributed from 0 to 8(Å)+1, totaling 100 centers. The
Gaussian width was set to 0.5.

ACTIVE LEARNING

Using our proposed AI search engine, 74 stable super-
conducting candidates with Tc ≥ 15 K were generated
through three iterations of active learning. This approach
progressively expanded the chemical space of high-Tc su-
perconducting materials. Additionally, we observed that
active learning improved the success rate of the DPA-2
model [43] from 15% to 53%.
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