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Compressing deep neural networks by matrix product operators
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A deep neural network is a parametrization of a multilayer mapping of signals in terms of many alternatively
arranged linear and nonlinear transformations. The linear transformations, which are generally used in the fully
connected as well as convolutional layers, contain most of the variational parameters that are trained and stored.
Compressing a deep neural network to reduce its number of variational parameters but not its prediction power
is an important but challenging problem toward the establishment of an optimized scheme in training efficiently
these parameters and in lowering the risk of overfitting. Here we show that this problem can be effectively
solved by representing linear transformations with matrix product operators (MPOs), which is a tensor network
originally proposed in physics to characterize the short-range entanglement in one-dimensional quantum states.
We have tested this approach in five typical neural networks, including FC2, LeNet-5, VGG, ResNet, and
DenseNet on two widely used data sets, namely, MNIST and CIFAR-10, and found that this MPO representation
indeed sets up a faithful and efficient mapping between input and output signals, which can keep or even improve
the prediction accuracy with a dramatically reduced number of parameters. Our method greatly simplifies the
representations in deep learnin, and opens a possible route toward establishing a framework of modern neural
networks which might be simpler and cheaper, but more efficient.
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I. INTRODUCTION

Deep neural networks [1–11] are important tools of ar-
tificial intelligence. Their applications in many computing
tasks, for example, in the famous ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC) [12], large vocabulary
continuous speech recognition [13], and natural language pro-
cessing [14], have achieved great success. They have become
the most popular and dominant machine-learning approaches
[15] that are used in almost all recognition and detection
tasks [3,16], including but not limited to language translation
[17], sentiment analysis [18], segmentation and reconstruction
[19], drug activity prediction [20], feature identification in big
data [21], and have attracted increasing attention from almost
all natural science and engineering communities, including
mathematics [22,23], physics [24–28], biology [19,29], and
materials science [30].

A deep feedforward neural network sets up a mapping
between a set of input signals, such as images, and a set of
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output signals, say categories, through a multilayer transfor-
mation, F , which is represented as a composition of many
alternatively arranged linear (L) and nonlinear (N) mappings
[31,32]. More specifically, an n-layer neural network F is a
sequential product of alternating linear and nonlinear trans-
formations:

F = NnLn · · ·N2L2N1L1. (1)

The linear mappings contain most of the variational param-
eters that need to be determined. The nonlinear mappings,
which contain almost no free parameters, are realized by some
operations known as activations, including rectified linear
unit, softmax, and so on.

A linear layer maps an input vector x of dimension Nx to
an output vector y of dimension Ny via a linear transformation
characterized by a weight matrix W :

y = W x + b. (2)

A fully connected layer plays the role as a global linear trans-
formation, in which each output element is a weighted sum-
mation of all input elements, and W is a full matrix. A con-
volutional layer [2] represents a local linear transformation, in
the sense that each element in the output is a weighted sum-
mation of a small portion of the elements, which form a local
cluster, in the input. The variational weights of this local clus-
ter form a dense convolutional kernel, which is designated to
extract some specific features. To maintain good performance,
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FIG. 1. (a) Graphical representation of the weight matrix W in a
fully connected layer. The blue circles represent neurons, e.g., pixels.
The solid line connecting an input neuron xi with output neuron
y j represents the weight element Wji. (b) MPO factorization of the
weight matrix W . The local operators w(k) are represented by filled
circles. The hollow circles denote the input and output indices, il and
jl , respectively. Given ik and jk , w(k)[ jk, ik] is a matrix.

different kernels are used to extract different features. A
graphical representation of W is shown in Fig. 1(a).

Usually, the number of elements or neurons, Nx and Ny, are
very large, and thus there are a huge number of parameters
to be determined in a fully connected layer [9]. The convo-
lutional layer reduces the variational parameters by grouping
the input elements into many partially overlapped kernels, and
one output element is connected to one kernel. The number of
variational parameters in a convolutional layer is determined
by the number of kernels and the size of each kernel. It could
be much less than that in a fully connected layer. However, the
total number of parameters in all the convolutional layers can
still be very large in a deep neural network which contains
many convolutional layers [10]. To train and store these
parameters raises a big challenge in this field. First, it is time
consuming to train and optimize these parameters, and may
even increase the probability of overfitting. This would limit
the generalization power of deep neural networks. Second,
it needs a big memory space to store these parameters. This
would limit its applications where the space of hard disk is
strongly confined; for example, on mobile terminals.

There are similar situations in the context of quantum in-
formation and condensed-matter physics. In a quantum many-
body system, the Hamiltonian or any other physical operator
can be expressed as a higher-order tensor in the space spanned
by the local basis states [33]. To represent exactly a quantum
many-body system, the total number of parameters that need
to be introduced can be extremely huge, and should in prin-
ciple grow exponentially with the system size (or the size of
each “image” in the language of neural network). The matrix
product operator (MPO) was originally proposed in physics to
characterize the short-range entanglement in one-dimensional
quantum systems [34,35], and is now a commonly used
approach to represent effectively a higher-order tensor or
Hamiltonian with short-range interactions. Mathematically, it
is simply a tensor-train approximation [36,37] that is used to
factorize a higher-order tensor into a sequential product of
the so-called local tensors. Using the MPO representation, the
number of variational parameters needed is greatly reduced

since the number of parameters contained in an MPO just
grows linearly with the system size. Nevertheless, it turns
out that to provide an efficient and faithful representation
of the systems with short-range interactions whose entangle-
ment entropies are upper bounded [38,39] or, equivalently,
the systems with finite excitation gaps in the ground states.
The application of MPOs in condensed-matter physics and
quantum information science has achieved great successes
[40,41] in the past decade.

In this paper, we propose to solve the parameter problem in
neural networks by employing the MPO representation, which
is illustrated in Fig. 1(b) and expressed in Eq. (5). The starting
point is the observation that the linear transformations in a
commonly used deep neural network have a number of similar
features as the quantum operators, which may allow us to
simplify their representations. In a fully connected layer, for
example, it is well known that the rank of the weight matrix
is strongly restricted [42–44] due to short-range correlations
or entanglements among the input pixels. This suggests that
we can safely use a lower-rank matrix to represent this layer
without affecting its prediction power. In a convolutional
layer, the correlations of images are embedded in the kernels,
whose sizes are generally very small in comparison with the
whole image size. This implies that the “extracted features”
from this convolution can be obtained from very local clusters.
In both cases, a dense weight matrix is not absolutely neces-
sary to perform a faithful linear transformation. This peculiar
feature of linear transformations results from the fact that the
information hidden in a data set is just short-range correlated.
Thus, to accurately reveal the intrinsic features of a data set,
it is sufficient to use a simplified representation that catches
more accurately the key features of local correlations. This
motivates us to adopt MPOs to represent linear transformation
matrices in deep neural networks.

There have been several applications of tensor network
structures in neural networks [37,45–50]. Our approach dif-
fers from them by the following aspects: (1) It is physically
motivated, emphasizes more on the local structure of the
relevant information, and helps to understand the success of
deep neural networks. (2) It works in the framework of neural
networks, in the sense that the multiple-layer structure and
activation functions are still retained and the parameters are
entirely optimized through algorithms developed in neural
networks. (3) It is a one-dimensional representation, and is
flexible to represent the linear transformations including both
the fully connected layers and the entire convolutional layers.
(4) It is also used to characterize the complexity of image data
sets. (5) A systematic study has been done. These issues will
become clear in the following sections.

The rest of the paper is structured as follows. In Sec. II,
we present the way the linear layers can be represented by
MPO and the training algorithm of the resulting network. In
Sec. III, we apply our method systematically to five main
neural networks, including FC2, LeNet-5, VGG, ResNet, and
DenseNet on two widely used data sets, namely, MNIST and
CIFAR-10. Experiments on more data sets can be found in
Sec. II. A in the Supplemental Material (SM) [51]. Finally, in
Sec. IV, we discuss the relation with previous efforts and the
possibility to construct a framework of neural networks based
on the matrix product representations in the future. In the SM
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[51], we give the detailed structure of the neural networks used
in this work, and provide extra information details about the
MPO representations.

II. METHOD

In this paper, the weight matrices W appearing in Eq. (2)
and representing linear mappings in the most parameter-
consuming layers—to be precise, all the fully connected
layers and some of the heaviest convolutional layers—are
expressed as MPOs. To construct the MPO representation of a
weight matrix W , we first reshape it into a 2n-indexed tensor:

Wyx = Wj1 j2··· jn,i1i2···in . (3)

Here, the one-dimensional coordinate x of the input signal
x with dimension Nx is reshaped into a coordinate in an
n-dimensional space, labeled (i1i2 · · · in). Hence, there is a
one-to-one mapping between x and (i1i2 · · · in). Similarly, the
one-dimensional coordinate y of the output signal y with
dimension Ny is also reshaped into a coordinate in an n-
dimensional space, and there is a one-to-one correspondence
between y and ( j1 j2 · · · jn). If Ik and Jk are the dimensions of
ik and jk , respectively, then

n∏
k=1

Ik = Nx,

n∏
k=1

Jk = Ny. (4)

The index decomposition in Eq. (3) is not unique. One should
in principle decompose the input and output vectors such
that the test accuracy is the highest. However, to test all
possible decompositions is time consuming. For the results
presented in this paper, we have done the decomposition just
by convenience, i.e., simply reshaping the single dimension
Nx as n parts {I1, I2, ..., In} in order. In fact, it can be argued
and verified by examples that when the network is away from
underfitting, different factorization manners should always
produce almost the same result. More details can be found
in Sec. II. B in the SM [51].

The MPO representation of W is obtained by factorizing it
into a product of n local tensors,

Wj1··· jn,i1···in = Tr(w(1)[ j1, i1]w(2)[ j2, i2] · · ·w(n)[ jn, in]), (5)

where w(k)[ jk, ik] is a Dk−1 × Dk matrix with Dk the dimen-
sion of the bond linking w(k) and w(k+1). In this case, D0 =
Dn = 1. For convenience in the discussion below, we assume
Dk = D for all k except k = 0 or n. A graphical representation
of this MPO is shown in Fig. 1(b).

In this MPO representation, the tensor elements of w(k) are
variational parameters. The number of parameters increases
with the increase of the bond dimension D. Hence D serves
as a tunable parameter that controls the expressive power. In
quantum many-body systems, D also controls the expressive
accuracy of a target state variationally.

The tensor elements of w(k) in Eq. (5), instead of the
elements of W in Eq. (2), are the variational parameters that
need to be determined in the training procedure of deep neural
networks. For an MPO whose structure is defined by Eq. (8),

the total number of these variational parameters equals

Nmpo =
n−1∑
k=2

IkJkD2 + I1J1D + InJnD, (6)

which will be a great reduction of the number NxNy in the
original fully connected layers (when Nx and Ny are large) and
of the number NkN0 in the original convolutional layers (when
the kernel size N0 and the number of kernels Nk are large).

The strategy of training is to find a set of optimal w’s so
the following cost function is minimized,

L = −
∑

m

tT
m log ym + α

2

∑
i

|w(i)|2, (7)

where m is the label of images, i is the label of all the parame-
ters, including the local tensors in the MPO representations
and the kernels in the untouched convolutional layers. |w|
represents the norm of parameter w, and α is an empirical
parameter that is fixed prior to the training. The first term mea-
sures the cross entropy between prediction vectors y and target
label vectors t . The second term is a constraint, called the L2
regularization [52], which is a widely adopted technique in
deep learning to alleviate overfitting, and thus it is also used
in all the networks mentioned in this paper, including both
the normal neural networks, such as FC2, LeNet-5, VGG,
ResNet, as well as DenseNet, and the corresponding MPO-
Net counterparts. It should be mentioned that the usage of the
L2 regularization has little to do with the validity of the MPO
representations, i.e., without L2 regularization, the MPO-Nets
should still work as well as the normal networks, as shown in
Sec. II. D in the SM [51].

To implement a training step, L is evaluated using the
known w’s, which are randomly initialized, and the input data
set. The gradients of the cost function with respect to the
variational parameters are determined by the standard back
propagation [53]. All the parameters w are treated equally
and are updated by the stochastic gradient descent with mo-
mentum algorithm [54] in parallel. This is different from the
previous effort [37] and is more suitable for deep learning.
This training step is terminated when the cost function stops
to drop.

The detailed structures of the neural networks we have
studied, as well as the performance on more data sets, differ-
ent factorization manners, entanglement entropy grasped, the
influence of L2 regularization, convergence of training, and so
on, are appended systematically in the SM [51]. The specific
setting of the hyperparameters for training can be found in the
source code [55].

III. RESULTS

Here we show the results obtained with the MPO rep-
resentation in five kinds of typical neural networks on two
data sets, i.e., FC2 [56] and LeNet-5 [2] on the MNIST data
set [57]; VGG [9], ResNet [10], and DenseNet [11] on the
CIFAR-10 data set [58]. Among them, FC2 and LeNet-5
are relatively shallow in the depth of network, while VGG,
Residual CNN (ResNet), and Dense CNN (DenseNet) are
deeper neural networks.
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For convenience, we use MPO-Net to represent a deep neu-
ral network with all or partial linear layers being represented
by MPOs. Moreover, we denote an MPO, defined by Eq. (5),
as

MJ1,J2,...,Jn
I1,I2,...,In

(D). (8)

To quantify the compressibility of MPO-net with respect to a
neural network, we define its compression ratio ρ as

ρ =
∑

l N (l )
mpo∑

l N (l )
ori

, (9)

where
∑

l is to sum over the linear layers whose transfor-
mation tensors are replaced by MPO. N (l )

ori and N (l )
mpo are the

number of parameters in the lth layer in the original and MPO
representations, respectively. The smaller is the compression
ratio, the fewer number of parameters is used in the MPO
representation.

Furthermore, to examine the performance of a given neural
network, we train the network m times independently to obtain
a test accuracy a with a standard deviation σ defined by

a = ā ± σ, (10)

σ = 1√
m − 1

[
m∑

i=1

(ai − ā)2

]1/2

, (11)

where ai is the test accuracy of the i-th training procedure. ā
is the average of {ai}. The results presented in this paper are
obtained with m = 5.

A. MNIST data set

We start from the identification of handwritten digits in
the MNIST data set [57], which consists of 60 000 digits for
training and 10 000 digits for testing. Each image is a square
of 28 × 28 grayscale pixels, and all the images are divided
into ten classes corresponding to numbers 0 ∼ 9, respectively.

1. FC2

We first test the MPO representation in the simplest text-
book structure of neural network, i.e., FC2 [56]. FC2 consists
of only two fully connected layers whose weight matrices
have 784 × 256 and 256 × 10 elements, respectively. We re-
place these two weight matrices, respectively, by M4,4,4,4

4,7,7,4 (D)

and M1,1,10,1
4,4,4,4 (4) in the corresponding MPO representation.

Here we fix the bond dimension in the second layer to 4, and
only allow the bond dimension to vary in the first layer.

Figure 2 compares the results obtained with FC2 and the
corresponding MPO-Net. The test accuracy of MPO-Net in-
creases when the bond dimension D is increased. It reaches the
accuracy of the normal FC2 when D = 16. Even for the D = 2
MPO-Net, which has only 1024 parameters, about 200 times
less than the original FC2, the test accuracy is already very
good. This shows that the linear transformations in FC2 are
very local and can indeed be effectively represented by MPOs.
The compression ratio of MPO-Net decreases with increasing
D. But even for D = 16, the compression ratio is still below
8%, which indicates that the number of parameters to be
trained can be significantly reduced without any accuracy loss.
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FIG. 2. Performance of the MPO representations in FC2 on
MNIST. The solid straight line denotes the test accuracy obtained
by the normal FC2, 98.35% ± 0.2%, and the dashed straight lines
are plotted to indicate its error bar.

2. LeNet-5

We further test MPO-Net with the famous LeNet-5 net-
work [2], which is the first instance of convolutional neural
networks. LeNet-5 has five linear layers. Among them, the last
convolutional layer and the two fully connected layers contain
the most parameters. We represent these three layers by three
MPOs, which are structured as M2,5,6,2

2,10,10,2(4), M2,3,7,2
2,5,6,2 (4), and

M1,5,2,1
2,3,7,2 (2), respectively. The compression ratio is ρ ∼ 0.05.
Table I shows the results obtained with the original and

MPO representations of LeNet-5. We find that the test ac-
curacy of LeNet-5 can be faithfully reproduced by MPO-
Net. Since LeNet-5 is the first and prototypical convolutional
neural network, this success gives us confidence in using the
MPO presentation in deeper neural networks.

B. CIFAR-10 data set

CIFAR-10 is a more complex data set [58]. It consists of
50 000 images for training and 10 000 images for testing. Each
image is a square of 32 × 32 RGB pixels. All the images
in this data set are divided into ten classes corresponding to
airplane, automobile, ship, truck, bird, cat, deer, dog, frog, and
horse, respectively. To have a good classification accuracy,
deeper neural networks with many convolutional layers are
used. To show the effectiveness of MPO representation, as a
preliminary test, we use MPOs only on the fully connected

TABLE I. Test accuracy a and compression ratios ρ obtained in
the original and MPO representations of LeNet-5 on MNIST and
VGG on CIFAR-10.

Original Rep MPO-Net

Data set Network a (%) a (%) ρ

MNIST LeNet-5 99.17 ± 0.04 99.17 ± 0.08 0.05
CIFAR-10 VGG-16 93.13 ± 0.39 93.76 ± 0.16 ∼0.0005

VGG-19 93.36 ± 0.26 93.80 ± 0.09 ∼0.0005
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layers and on some heavily parameter-consuming convolu-
tional layers.

1. VGG

VGG [9] is the first very deep neural network contrusted. It
won first place in the localization task of the ILSVRC compe-
tition 2014. We have tested two well-established VGG struc-
tures, which have 16 and 19 layers, respectively. In both cases,
there are many convolutional layers and three fully connected
layers. We represent the last two heaviest convolutional layers
and all the three fully connected layers, respectively, by MPO
with the structures: M2,8,8,8,2

2,8,8,8,2 (4), M2,8,8,8,2
2,8,8,8,2 (4), M4,4,8,8,4

4,4,4,4,2 (4),

M4,4,8,8,4
4,4,8,8,4 (4), and M1,10,1,1,1

4,4,8,8,4 (4). The result is summarized in
Table I.

For both structures, the compression ratio of MPO-Net is
about 0.0005. Hence the number of parameters used is much
less than in the original representation. However, we find that
the prediction accuracy of MPO-Net is even better than those
obtained from the original networks. This is consistent with
the results reported by Novikov [37] for the ImageNet data
set [59]. It results from two facts of MPOs: First, since the
number of variational parameters is greatly reduced in MPO-
Net, the representation is more economical and it is easier to
train the parameters. Second, the local correlations between
input and output elements are more accurately represented by
MPO. This can reduce the probability of overfitting.

2. ResNet

ResNet [10] is commonly used to address the degradation
problem with deep convolutional neural networks. It won
first place on the detection task in ILSVRC in 2015, and
differs from the ordinary convolutional neural network by the
so-called ResUnit structure, in which identity mappings are
added to connect some of the input and output signals. The
ResNet structure used in our calculation has a fully connected
layer realized by a weight matrix of 64k × 10. Here k controls
the width of the network. We represent this layer by an
MPO of M1,5,2,1

4,4,4,k (3). In our calculation, k = 4 is use and the
corresponding compression ratio is about 0.11.

Figure 3 shows the test accuracy as a function of the depth
of layers of ResNet with k = 4. We find that MPO-Net has
the same accuracy as the normal ResNet for all the cases we
have studied. We also find that even the ResUnit can be com-
pressed by MPO. For example, for the 56-layer ResNet, by
representing the last heaviest ResUnit and the fully connected
layer with two M2,4,4,4,4,4,4,2

2,4,4,4,4,4,4,2 (4) and one M1,5,2,1
4,4,4,k (3), we obtain

the same accuracy as the normal ResNet. Similar observations
are obtained for other k values.
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FIG. 3. Comparison of the test accuracy a between the original
and MPO representations of ResNet on CIFAR-10 with k = 4. The
compression ratio of MPO-Net ρ ∼ 0.11.

3. DenseNet

The last deep neural network we have tested is DenseNet
[11]. Constructed in the framework of ResNet, DenseNet
modifies ResUnit to DenseUnit by adding more shortcuts in
the units. This forms a wider neural network, allowing the
extracted information to be more efficiently recycled. It also
achieved great success in the ILSVRC competition, and drew
much attention in the CVPR conference in 2017.

The DenseNet used in this work has a fully connected layer
with a weight matrix of (n + 3km) × 10, where m controls
the total depth L of the network, L = 3m + 4, n and k are the
other two parameters that specify the network. There is only
one fully connected layer in DenseNet, and we use MPO to
reduce the parameter number in this layer. Corresponding to
different m, k, and n, we use different MPO representations.

Our results are summarized in Table II. For the four
DenseNet structures we have studied, the fully connected
layer is compressed by more than seven to 21 times. The
corresponding compression ratios vary from 0.044 to 0.129.
In the first three cases, we find that the test precisions obtained
with MPO-Net agree with the DenseNet results within nu-
merical errors. For the fourth case, the test accuracy obtained
with MPO-Net is even slightly higher than that obtained
with DenseNet. Further more, in the first structure listed
in Table II, we have also tried to replace the last heaviest

TABLE II. Performance of MPO representations in DenseNet on CIFAR-10.

Test accuracy (%)

Depth (n, m, k) DenseNet MPO-Net MPO structure ρ

40 (16, 12, 12) 93.56 ± 0.26 93.59 ± 0.13 M1,5,2,1
4,4,7,4 (4) 0.129

40 (16, 12, 24) 95.12 ± 0.15 95.13 ± 0.13 M1,5,2,1
4,5,11,4(4) 0.089

100 (24, 32, 12) 95.36 ± 0.15 95.58 ± 0.07 M1,5,2,1
4,7,7,6 (4) 0.070

100 (96, 32, 24) 95.74 ± 0.09 96.09 ± 0.07 M1,5,2,1
5,8,12,5(4) 0.044
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convolutional layer by M2,4,4,3,4,2
4,5,8,11,4,4(20) while keeping the last

fully connected layer represented by M1,5,2,1
4,4,7,4 (4). The obtained

accuracy is about 93.52 ± 0.40, which is still consistent with
the original DenseNet result 93.56 ± 0.26. The corresponding
compression ratio is also considerable, i.e., ρ ∼ 0.497.

Applications to more data sets, such as the Fashion-MNIST
[60] and Street View House Number data sets [61], can be
found in Sec. II. A in the SM [51]. We found that the faithful
representation and the effective compression capability of
MPO are also valid there.

IV. DISCUSSION

Motivated by the success of MPOs in the study of quantum
many-body systems with short-range interactions, we propose
to use MPOs to represent linear transformation matrices in
deep neural networks. This is based on the assumption that the
correlations between pixels, or the inherent structures of infor-
mation hidden in “images,” are essentially localized [62,63],
which enables us to make an analogy between an image and
a quantum state and further between a linear mapping in
neural network and a quantum operator in physics. We have
tested our approach with five different kinds of typical neural
networks on two data sets, and found that MPOs cannot only
improve the efficiency in training and reduce the memory
space, as originally expected, but also slightly improve the
test accuracy using much fewer number of parameters than in
the original networks. This, as already mentioned, may result
from the fact that the variational parameters can be more accu-
rately and efficiently trained due to the dramatic reduction of
parameters in MPO-Net. The MPO representation emphasizes
more on the local correlations of input signals. It puts a strong
constraint on the linear transformation matrix and avoids the
training data being trapped at certain local minima. We believe
this can reduce the risk of overfitting.

In fact, by using the canonical form [64] of an MPO
representation obtained from training, we can introduce the
entanglement entropy, initially defined for a quantum state in
physics, for a data set in deep learning to quantify the ex-
pressive ability of the network and the complexity of the data
set. This can also help to understand the relation between
local correlations in the input data sets and the performance
of the MPO-Nets. More details about this topic can be found
in Sec. II. C in the SM [51].

MPOs can be used to represent both fully connected and
convolutional layers. In our paper, they are not distinguished
from each other at all, and are regarded as the same thing,
i.e., linear mappings appeared in Eq. (1). One can also use it
just to represent the kernels in convolutional layers, which is
a substantially different approach to use MPOs since the con-
volutional structure is still retained, as suggested by Garipov
et al. [45]. However, it is more efficient in representing a
fully connected layer where the weight matrix is a fully dense
matrix. This representation can greatly reduce the memory
cost and shorten the training time in a deep neural network
where all or most of the linear layers are fully connected ones,
such as in a recurrent neural network [46,65,66], which is used
to dispose of video data.

Tensor-network representation of deep neural networks is
actually not new. Inspired by the locality assumption about

the correlations between pixels, matrix product representation
has been already successfully used to characterize and com-
press images [62] and to determine the underlying generative
models [67]. Novikov et al. [37] also used MPOs to represent
some fully connected layers, not including the classifiers, in
FC2 and VGG. Our work, however, demonstrates that all
fully connected layers, including the classifiers especially, as
well as convolutional layers, can be effectively represented by
MPOs no matter how deep a neural network is. In other words,
in our approach there are no concepts of fully connected layers
or convolutional layers but only linear mappings expressed
as sparse MPO and parameter-free nonlinear activations. We
think this is a great simplification for both concepts and
applications and is of great potential due to the much less
required memory space and relatively mathematical structure
to study. Our work will greatly help the application of neural
networks and especially may help to get rid of connection to
the cloud.

There are some previous efforts which aim to establish
the entire mapping from the input data to the output label,
e.g., Stoudenmire and Schwab tried to represent the mapping
in terms of a single MPO [50]. Our proposal differs from
it since we are still working in the framework of neural
networks, in the sense that the multiple-layer structure and
activation functions are still retained. There are also other
mathematical structures that have been used to represent
deep neural networks due to entanglement consideration from
physics. For example, Kossaifi et al. [47] used a Tucker-
structure representation, which is a lower-rank approximation
of a high-dimensional tensor, to represent a fully connected
layer and its input feature. Hallam et al. [48] used a tensor
network called a multiscale entangled renormalization ansatz
[68] and Liu et al. [49] used an unitary tree tensor network
[69] to represent the entire mapping from the input to the
output labels. Comparing with these works, our approach is
a one-dimensional representation which emphasizes more on
local entanglement in physics, and it is more efficient and
flexible to represent some intermediate layers.

It is valuable to mention two aspects about the MPO rep-
resentation. One is about its application scope. Due to the lo-
cality assumption, it is expected to work efficiently in the data
sets where locality can be appropriately defined; otherwise, a
large bond dimension would be necessary, which might lead
to the loss of efficiency and advantage. The other is about the
manner how the input data is ordered when it is fed to the
MPO-Net. It is instructive to notice that different orderings
of an input vector are related by elementary transformations;
therefore, they should lead to the same prediction, in principle,
as long as the bond dimension is sufficiently large; while given
a small bond dimension, the ordering which keeps better the
locality may lead to higher prediction accuracy. A coarse-
grained ordering which can better characterize the locality of
the original image was proposed in Ref. [62] and is worth
being studied systematically in the future.

In this paper, we have proposed to use MPOs to compress
the transformation matrices in deep neural networks. Similar
ideas can be used to compress complex data sets, for example,
the data set called ImageNet [59], in which each image
contains about 224 × 224 pixels. In this case, it is matrix
product states [70], instead of MPOs, that should be used. We
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believe this can reduce the cost in decoding each “image” in
a data set, and by combining with the MPO representation of
the linear transformation matrices, can further compress deep
neural networks and enhance prediction power. A preliminary
example is shown in Sec. II. E in the SM [51]. Another possi-
ble advance in the future is about the analysis of optimization
in a neural network. In this work, in most cases, MPO-Nets
converge faster than the original networks in the training pro-
cedure, and this is probably due to the far fewer parameters.
However, in deep learning, due to the strong nonlinearity of
the cost function, e.g., Eq. (7), more parameters means higher-
dimensional variational space and might have more local min-
ima, thus it is difficult for the current optimization approach,
e.g., stochastic gradient descent method, to guarantee a faster
convergence speed in a model with fewer parameters. The
counterexamples can be found in both normal networks and
MPO-Nets, as discussed in Sec. II. E in the SM [51]. By using
MPO representations, as a complementary tool, we can study
this optimization problem in deep learning from the viewpoint
of entanglement entropy developed in quantum physics, as
we did preliminarily in the SM [51]. Therefore, based on

these matrix product representations stemming from quantum
many-body physics, it is possible to establish a framework of
modern neural networks which might be simpler, cheaper, but
more efficient and better understood. It is also expected that
this bridge between quantum many-body physics and deep
learning can eventually provide some useful feedback and
insight to physics, and we would like to leave the extensive
study as a future pursuit.
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