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A Model Compression Method With Matrix Product
Operators for Speech Enhancement
Xingwei Sun , Ze-Feng Gao, Zhong-Yi Lu, Junfeng Li, and Yonghong Yan

Abstract—The deep neural network (DNN) based speech en-
hancement approaches have achieved promising performance.
However, the number of parameters involved in these methods is
usually enormous for the real applications of speech enhancement
on the device with the limited resources. This seriously restricts
the applications. To deal with this issue, model compression tech-
niques are being widely studied. In this paper, we propose a model
compression method based on matrix product operators (MPO)
to substantially reduce the number of parameters in DNN models
for speech enhancement. In this method, the weight matrices in
the linear transformations of neural network model are replaced
by the MPO decomposition format before training. In experiment,
this process is applied to the causal neural network models, such
as the feedforward multilayer perceptron (MLP) and long short-
term memory (LSTM) models. Both MLP and LSTM models
with/without compression are then utilized to estimate the ideal
ratio mask for monaural speech enhancement. The experimen-
tal results show that our proposed MPO-based method outper-
forms the widely-used pruning method for speech enhancement
under various compression rates, and further improvement can
be achieved with respect to low compression rates. Our proposal
provides an effective model compression method for speech en-
hancement, especially in cloud-free application.

Index Terms—Speech enhancement, model compression,
pruning, matrix product operators.

I. INTRODUCTION

S PEECH enhancement techniques to mitigate the harmful
effects of background noise and interference have been

studied for several decades with a variety of promising applica-
tions, such as telecommunications and hearing aid systems [1].
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Monaural speech enhancement is widely used to improve the
speech quality and speech intelligibility. Conventional speech
enhancement approaches exploit the different characteristics of
speech and noise in the time-frequency (T-F) domain to suppress
the background noise, such as spectral subtraction [2], Wiener
filter [3], and statistical model-based estimators [4]. However,
the performance of these methods often greatly degrades espe-
cially in non-stationary noise conditions.

In recent years, the deep neural network (DNN)-based speech
enhancement methods have achieved promising performance,
especially in non-stationary noise conditions [5]. The DNN-
based monaural speech enhancement methods are mainly di-
vided into the mapping-based and masking-based approaches.
The mapping-based approaches adopt DNN as a regression
model to directly map the log power spectrum of noisy speech
to that of clean speech [6] [7]. In the masking-based methods,
the mask in the T-F domain is estimated and further applied
to the noisy spectrum. In [8], DNNs are first trained as binary
classifiers to predict the ideal binary mask (IBM) for removing
the background noise. The IBM is proposed based on the concept
of computational auditory scene analysis (CASA) [9], which
assigns 1 to a T-F unit if the speech energy within the unit exceeds
the noise energy and 0 otherwise. Subsequently, the ideal ratio
mask (IRM) [10] which assigns a soft label between 0 and 1
rather than binary label to each T-F unit and yields better speech
quality. More recently, the masks involving phase information
have been proposed to improve the enhancement performance,
such as the phase-sensitive mask (PSM) [11] and complex ideal
ratio mask (cIRM) [12].

Deep learning techniques, especially deep neural networks,
have developed rapidly in recent years. In DNN-based speech
enhancement approaches, the feedforward multilayer percep-
trons (MLPs) are first used for spectral mapping and mask
estimation. For MLPs, a window of consecutive time frames is
typically utilized to provide the temporal contexts information.
Without the ability of leveraging long term information, the
generalization ability of the MLP-based approaches to speakers
is limited [13]. Speech enhancement is formulated as a sequence-
to-sequence mapping in [14] and recurrent neural network
(RNN) with long short-term memory (LSTM) layers is utilized
to address speaker generalization. RNNs have been proven to
perform better than MLPs for speech enhancement [15] [16].
Convolutional neural network (CNN) has also been used for
speech enhancement recently. In [17], a convolutional encoder-
decoder network (CED) is used to learn a spectral mapping
function and then shows the similar denoising performance

2329-9290 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Renmin University. Downloaded on August 31,2022 at 09:04:48 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9382-6113
mailto:sunxingwei@hccl.ioa.ac.cn
mailto:lijunfeng@hccl.ioa.ac.cn
mailto:zfgao@ruc.edu.cn
mailto:zlu@ruc.edu.cn
mailto:yanyonghong@hccl.ioa.ac.cn


2838 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

compared with the MLP and RNN model with much smaller
model size. Afterwards, a fully convolutional network (FCN) is
proposed for straightforward mapping from a noisy waveform
to the corresponding clean waveform [18]. In [19], an additional
temporal convolutional module using causal and dilated convo-
lutional layers is inserted between the encoder and the decoder of
the CED-based speech enhancement architecture. This method
obtained better performance with much fewer parameters ben-
efited from the dilated convolution layers compared with an
LSTM-based method.

Thus far, the DNN-based speech enhancement approaches
have achieved good performance by designing complicated neu-
ral network architectures. However, these methods often involve
enormous number of parameters with high memory require-
ments. To address the compromise between high-performance
and compact model size, lots of notable works have been done.
Knowledge distilling is proposed and successfully applied in
MLPs [20] and CNNs [21], which compresses a large deep neu-
ral network into a smaller neural network by training the latter
model on the transformed softmax outputs from the former. This
also works for RNNs [22]. With more simplicity, the pruning
algorithm is also proposed to reduce the model size [23] [24],
in which the network is pruned to learn the main important con-
nections through removing the connections with small weights.
The pruned model can be retrained to fine tune the remaining
connections. The weight matrices of the pruned model can be
considered sparse which means the model can be compressed
by only keeping the non-zero values and their corresponding
coordinates. Weight sharing and quantization methods assume
that many weights of a well trained model have similar values.
Thus, the weight values can be grouped with grouping methods
such as hashing [25], k-means, and vector quantization [23],
in order to reduce the number of free parameters. In [26], a
singular value decomposition (SVD) approach was applied to the
weight matrices of a well-trained MLP model. Then the model is
restructured based on the inherent sparseness of the original ma-
trices which reduce the model size significantly with negligible
accuracy loss while the model can also be retrained to lessen the
accuracy loss. Low-rank decomposition is also used for model
size compression by replacing the weight matrices in fully-
connected layers with their low-rank approximations, obtained
with truncated SVD [27]. Similar to the low-rank approximation,
the Tensor-Train format [28] is used to replace the dense weight
matrices of fully-connected layers [29] and embedding lay-
ers [30]. In [31], the matrix product operators (MPO) decompo-
sition format developed from quantum many-body physics and
based on high order tensor single value decomposition method,
is proved to be well effective for model compression by replacing
the linear transformations of fully-connected and convolutional
layers. Instead of replaced the CNN layers with the MPO format
in [31], the weight matrix of each convolution kernel in CNN
layer is decomposed with MPO format to compress the model
with CNN layers in [32]. In [33], the compression method for
recurrent neural network was proposed in a video classification
task. However, only the input-to-hidden weight matrix in LSTM
model has been compressed with the Tensor-Train format and

the hidden-to-hidden weight matrix remain unchanged. After
these progresses for model size compression, quantization and
Huffman coding can be used to further reduce the memory
requirement [23].

In real applications of speech enhancement, such as speech
communication, the memory resource is restricted. Therefore, in
addition to achieve good performance, the compact model size is
also important for DNN-based speech enhancement approaches.
In this paper, we focus on reducing the model size before using
quantization and Huffman coding. We propose a model com-
pression method based on the MPO decomposition and apply it
to the casual neural network models, such as MLP and LSTM, for
speech enhancement. In this method, the linear transformations
in MLP and LSTM models are replaced by MPO decomposition
format. In experiment, both MLP and LSTM models with and
without compression are trained to estimate the IRM in various
noise environments. The speech enhancement performance of
the compressed model using our proposed MPO-based method
is evaluated and compared with the pruning method under the
compression rates from 5 to 100 times. The experimental results
show that, the MPO-based method outperforms the pruning
method for two DNN models under the same compression rates
and satisfactory performance can still be obtained with small
model size with MPO-based model compression. Moreover,
further improvement has been achieved in low compression rates
with the MPO-based method. Overall, our proposed MPO-based
model compression method for speech enhancement has three-
fold benefits: (1) we applied the MPO-based decomposition for
both the input-to-hidden and hidden-to-hidden weight matrixes
in LSTM model which is different from the previous MPO-based
compression methods; (2) this method outperforms the pruning
method in speech enhancement performance while the satisfac-
tory performance can still be obtained with small model size,
and further improvement can be obtained at low compression
rate; (3) this MPO-based method can be easily integrated to any
network models with linear transformations and trained with the
other parts of the model.

The rest of this paper is organized as follows. The DNN-
based monaural speech enhancement system is introduced in
Section II. In Section III, we describe the MPO-based model
compression method in detail. Experimental setup is provided in
Section IV, followed by the experimental results and analysis in
Section V. Finally, the discussion and conclusion are presented
in Section VI.

II. DNN-BASED MONAURAL SPEECH ENHANCEMENT

The block diagram of the monaural speech enhancement
framework with DNN-based mask estimation is illustrated in
Fig. 1. In the training stage, the DNN-based model is trained us-
ing the acoustic features and masking-based target from pairs of
clean and noisy speech data. In the testing stage, the well-trained
DNN model is fed with the acoustic features of noisy speech for
mask estimation, while the enhanced speech is reconstructed
with the noisy speech and estimated mask. More details about

Authorized licensed use limited to: Renmin University. Downloaded on August 31,2022 at 09:04:48 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: MODEL COMPRESSION METHOD WITH MATRIX PRODUCT OPERATORS FOR SPEECH ENHANCEMENT 2839

Fig. 1. A block diagram of monaural speech enhancement framework with
DNN-based mask estimation.

the framework used in this paper are presented in the following
subsections.

A. Signal Model

In noisy environments, speech signal is often corrupted by
background noise. The received noisy speech signal y(k) at a
microphone can be described as:

y(k) = s(k) + n(k), (1)

where k indicates the time sample index, s(k) and n(k) de-
note the target speech and additive background noise signals,
respectively. The objective of speech enhancement is to remove
the noise signal from the received signal and retain the target
speech signal as much as possible. As the speech enhancement
methods usually process the signals in frequency domain, the
signal model in (1) can be transformed into frequency domain
with short-time Fourier transform (STFT) and described as:

Y (l, f) = S(l, f) +N(l, f), (2)

where l and f indicate the time frame index and frequency
bin index, and Y (l, f), S(l, f) and N(l, f) denote the complex
spectrum of the corresponding signals after STFT process.

B. Acoustic Features and Training Target

In the training stage, the acoustic features and the masking-
based target are computed from the clean and noisy speech pairs.
Then the acoustic features and masking-based target are fed into
the DNN model for training. In the testing stage, the acoustic
features extracted from the noisy speech are fed into the well-
trained model for mask estimation.

The effect of different acoustic features of DNN-based speech
enhancement have been studied in many researches. Inspired
by [34], we combine several acoustic features to form a comple-
mentary feature set for the DNN model training. This comple-
mentary feature set includes the amplitude modulation spectro-
gram (AMS), relative spectral transform and perceptual linear
prediction (RASTA-PLP), mel-frequency cepstral coefficients
(MFCC), cochleagram response and their deltas. The acoustic
features of each frame are computed.

To demonstrate the effectiveness of the proposed model, we
use the models to estimate the IRM, which is a widely-used
masking-based training target in DNN-based speech enhance-
ment. It can be computed as:

IRM(l, f) =

√
|S(l, f)|2

|S(l, f)|2 + |N(l, f)|2 . (3)

The value of IRM is between 0 and 1. In the testing stage, the es-
timated IRM is multiplied by the magnitude of the noisy speech
signal and the noisy phase is used for the signal reconstruction
with inverse STFT (ISTFT) process.

C. DNN Model Architecture

In this section, the basic architectures of MLP and LSTM
are described. Both models are used for mask estimation in this
study.

1) Basic Architecture of MLP Model: The MLP model is
comprised of multiple fully-connected layers. Without loss of
generality, we use the forward progress of the first layer as an
example which can be described as:

h = F (Wx+ b), (4)

where h and x are the value of hidden and input layer units,
W and b are the trainable weight matrix and bias, and F is
the activation function. The MLP model can be trained with the
back propagation algorithm.

2) Basic Architecture of LSTM Model: As the speech signal
has strong temporal correlation, RNN model with LSTM layers
is used for learning the temporal dynamics of speech. An LSTM
block has a memory cell and three gates in which the input
gate controls how much information should be added to the cell,
the forget gate controls how much previous information should
be erased from the cell, and the output gate controls how much
information should be transformed to the next layer. In this study,
the LSTM is defined by the following equations:

i[t] = σ(Wix[t] +Uih[t−1] + bi), (5)

f [t] = σ(Wfx[t] +Ufh[t−1] + bf ), (6)

o[t] = σ(Wox[t] +Uoh[t−1] + bo), (7)

g[t] = tanh(Wgx[t] +Ugh[t−1] + bg), (8)

c[t] = f [t] ⊗ c[t−1] + i[t] ⊗ g[t], (9)

h[t] = o[t] ⊗ tanh(c[t]), (10)

where x[t], g[t], c[t], h[t] represent input, block input, memory
cell, and hidden activation output at current time step t, respec-
tively. c[t−1] and h[t−1] represent memory cell and hidden acti-
vation output at previous time step t− 1. The input gate, forget
gate, and output gate are denoted as i, f , ando respectively.σ and
tanh represent the sigmoid and hyperbolic tangent activation
functions respectively. ⊗ denotes element-wise multiplication.
W,U, andbwith different superscripts are the input-to-hidden,
hidden-to-hidden weight matrices, and bias in different gates and
the block input respectively.
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Fig. 2. Construction of MPO decomposition format matrices from a standard weight matrix. Gray color depicts how a single element in an initial matrix is
transformed into a high-dimension matrix and represented with the product of a sequence of matrices in MPO decomposition format.

III. MPO-BASED MODEL COMPRESSION

In this section, we first give an introduction to the core
ingredient of the MPO decomposition format which is the basis
of MPO-based model compression method. Then we replace the
linear transformations in MLP and LSTM models by an MPO
decomposition format to obtain compact models for monaural
speech enhancement. Note that, the MPO representation can be
trained end-to-end, thus it can work together with the rest of
models in a very efficient way and no extra process is needed
for model training.

A. Matrix Product Operators

An MPO decomposition format, developed from quantum
many-body physics, is a more generalized form of the Tensor-
Train format that is used to factorize a higher-order tensor into
a sequential product of the so-called local-tensors [35]. By
representing the linear transformations in a model with MPO
decomposition format, the number of parameters requirement is
greatly shrunk since the number of parameters contained in an
MPO decomposition format just grows linearly with the system
size[36].

To clarify the MPO decomposition process, we assume
that a weight matrix WI,J ∈ RI×J is matrix with size
I × J . Given two arbitrary factorizations of its dimensions
into natural numbers, we can reshape and transpose this
matrix into an N -dimension tensor WI1···Ik ···IN ,J1···Jk ···JN

∈
RI1J1×···×IkJk×···×INJN , in which:

N∏
k=1

Ik = I,
N∏

k=1

Jk = J. (11)

This process can be regarded as one-to-one element mapping of
a low-dimension matrix to a high-dimension tensor. Then the
MPO decomposition can be applied to a high-dimension tensor
and leading to a more compact representation. A high-dimension
tensor can be represented as the product of a sequence of matrices
which are called local-tensors. A visualized description of the
MPO decomposition for a 3-dimension tensor which is mapped
from a standard matrix is shown in Fig. 2 [30]. The gray
color depicts that how a single element in an initial matrix is
transformed into a high-dimension matrix and represented with
the product of local-tensors. This decomposition can be written

as:

WI1I2···IN ,J1J2···JN
=

W(1)[I1, J1] · · ·W(k)[Ik, Jk] · · ·W(N)[IN , JN ],
(12)

where W(k)[Ik, Jk] is a 4-dimensional tensor with size Dk−1 ×
Ik × Jk ×Dk in which Dk is a bond dimension linking W(k)

and W(k+1) with D0 = DN = 1. The factorization factors, Ik
and Jk, and the bond dimension, Dk, of a local tensor are the
tunable hyper-parameters of a compact model to get the given
compression rate. Empirically, the number of local tensor would
be increased and the bond dimension would be reduced to obtain
lager compression rate in a network model.

Such a matrix product structure in an MPO representation
leads to such a fact that the scaling of the parameter number
with dimensions of a tensor is reduced from exponential to poly-
nomial, which is a great advantage of MPO representation. To
be specific, the parameter number is shrunk with the following
equation:

N∏
k=1

IkJk →
N∑

k=1

IkJkDk−1Dk. (13)

When W(k)[Ik, Jk] is of full rank, which means Dk =
IkJkDk−1, there is no parameter shrinking. Therefore, by re-
ducing the dimension of Dk, we can get rid of the redundant
parameters to compress the model. In practice, Dk is tuned to
get a tradeoff between model compression and fitting ability.

B. MPO-Based Compression of MLP Model

As introduced in Subsection II-C, the core ingredient of MLP
model is its fully-connected layer. It can be regarded as a linear
transformation without considering the activation function. As-
suming the input and hidden layers in MLP model have Nx and
Nh units, Eq.(4) can be written as:

hNh
= F (WNh,Nx

xNx
+ bNh

). (14)

In the linear transformation part, the parameters in weight matrix
WNh,Nx

∈ RNh×Nx can be compressed using MPO decompo-
sition. Specifically, with

∏N
k=1 Ik = Nh,

∏N
k=1 Jk = Nx, the
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weight matrix WNh,Nx
can be written as:

WNh,Nx
= WI1···Ik ···IN ,J1···Jk ···JN

= W(1)[I1, J1] · · ·W(k)[Ik, Jk] · · ·W(N)[IN , JN ],
(15)

where W(k)[Ik, Jk] is a 4-dimensional tensor with size Dk−1 ×
Ik × Jk ×Dk and these tunable hyper-parameters are adjusted
to get a given compression rate. After the MPO decomposition
of the weight matrix, the linear transformation can be written
as:

MPO(WNh,Nx
,xNx

) =

W(1)[I1, J1] · · ·W(k)[Ik, Jk] · · ·W(N)[IN , JN ]xJ1···Jk ···JN
,

(16)
where xJ1···Jk ···JN

is the input tensor reshape and transpose into
an N-dimension fromxNx

. Finally, we term the forward progress
of the fully-connected layer as:

hNh
= F (MPO(WNh,Nx

,xNx
) + bNh

), (17)

Before the model training, the weight matrices are replaced with
MPO decomposition format. As the MPO representation can be
trained with the other parts of the model, the back propagation
algorithm can still be used for training. The parameter compres-
sion rate of one fully-connected layer in MLP model is given
by:

ρMLP =

∑N
k=1 IkJkDk−1Dk +Nh

NhNx +Nh
. (18)

C. MPO-Based Compression of LSTM Model

As linear transformations are the basic operators of a LSTM
model, it can also be compressed using MPO-based method.
Inspired by [37], we reorganize the basic operators of LSTM
model to obtain better compression performance. Take the first
layer of LSTM model as an example with Nx input and Nh

hidden units, the basic operators presented in Eqs. (5)–(8) can
be written as:

m
[t]
4Nh

= F ((W4Nh,Nx
x
[t]
Nx

+U4Nh,Nh
h
[t−1]
Nh

) + b4Nh
),
(19)

where

m4Nh
=

⎛
⎜⎜⎜⎜⎝
i
[t]
Nh

f
[t]
Nh

o
[t]
Nh

g
[t]
Nh

⎞
⎟⎟⎟⎟⎠ , F =

⎛
⎜⎜⎜⎝

σ

σ

σ

tanh

⎞
⎟⎟⎟⎠ ,b4Nh

=

⎛
⎜⎜⎜⎝
bi
Nh

bf
Nh

bo
Nh

bg
Nh

⎞
⎟⎟⎟⎠ , (20)

W4Nh,Nx
=

⎛
⎜⎜⎜⎝
Wi

Nh,Nx

Wf
Nh,Nx

Wo
Nh,Nx

Wg
Nh,Nx

⎞
⎟⎟⎟⎠ ,U4Nh,Nh

=

⎛
⎜⎜⎜⎝
Ui

Nh,Nh

Uf
Nh,Nh

Uo
Nh,Nh

Ug
Nh,Nh

⎞
⎟⎟⎟⎠ . (21)

Then in the linear transformation parts of Eq. (19), the
parameters in input-to-hidden weight matrix W4Nh,Nx

∈
R4Nh×Nx and hidden-to-hidden weight matrix U4Nh,Nh

∈
R4Nh×Nh can be compressed using MPO decomposition
format. With

∏NW

k=1 I
W
k = 4Nh,

∏NW

k=1 J
W
k = Nx,

∏NU

k=1 I
U
k =

4Nh and
∏NU

k=1 J
U
k = Nh, we can have:

W4Nh,Nx
= WIW

1 ···IW
k ···IW

NW
,JW

1 ···JW
k ···JW

NW

=W(1)[IW1 , JW
1 ]· · ·W(k)[IWk , JW

k ] · · ·W(NW )[IWNW
, JW

NW
],

(22)
and

U4Nh,Nh
= UIU

1 ···IU
k ···IU

NU
,JU

1 ···JU
k ···JU

NU

= U(1)[IU1 , JU
1 ] · · ·U(k)[IUk , JU

k ] · · ·U(NU )[IUNU
, JU

NU
],
(23)

where W(k)[JW
k , JW

k ] is a 4-dimensional tensor with size
DW

k−1 × IWk × JW
k ×DW

k andU(k)[JU
k , JU

k ]with sizeDU
k−1 ×

IUk × JU
k ×DU

k . After that, Eq.(19) can be written in MPO
format as:

m
[t]
4Nh

= F ((MPO(W4Nh,Nx
,x

[t]
Nx

)

+MPO(U4Nh,Nh
,h

[t−1]
Nh

)) + b4Nh
). (24)

Finally, the compression rate of the input-to-hidden weight
matrix W4Nh,Nx

is:

ρW =

∑NW

k=1 I
W
k JW

k DW
k−1D

W
k

4NhNx
, (25)

and the compression rate of the hidden-to-hidden weight matrix
U4Nh,Nh

is:

ρU =

∑NU

k=1 I
U
k JU

k DU
k−1D

U
k

4NhNh
. (26)

Thus, the compression rate of one layer in LSTM model can be
computed as:

ρLSTM =∑NW

k=1 I
W
k JW

k DW
k−1D

W
k +

∑NU

k=1 I
U
k JU

k DU
k−1D

U
k + 4Nh

4NhNx + 4NhNh + 4Nh
.

(27)

IV. EXPERIMENTAL SETUP

A. Data Preparation

In the experiments, we used a Chinese speech corpus which
consists of speech utterances from a number of male and female
speakers. We randomly selected 4620 speech utterances used for
training and 100 speech utterances used for testing. The speech
utterances used for testing are not included in the training set.
To obtain noise-independent model, 20 types of noises from the
NOISEX92 [38], DEMAND [39] and CHiME-III [40] corpora
were used and divided into 3 noise datasets respectively, as
shown in Table I.

We evaluated both MLP and LSTM models in two different
monaural speech enhancement tasks. In Task I, only noise dataset
C was used with the first half of each noise signal for training and
the second half for testing. In Task II, the noise datasets A and
B were used for training,while the noise dataset C was used for
testing. The same speech datesets were used for both tasks. When
generating the noisy speech signals, the clean speech signals and
noise signals were mixed at three different signal-to-noise ratio
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TABLE I
NOISE DATASETS USED IN THIS EXPERIMENT

(SNR) levels (−5 dB, 0 dB and 5 dB). We expanded a speech
utterance shorter than 5 seconds to 5 seconds by repeating it
or randomly truncating the one longer than 5 seconds before
mixing with the noise that was expanded or truncated in the same
way. We generated 55440 and 1200 noisy speech utterances
in training and testing datasets respectively for each task by
randomly selecting the noise types for each speech utterance,
which are about 77 and 1.7 hours, respectively.

B. Baseline and Training Details

The signal at 16 kHz sample rate was framed using a 32 ms
Hamming window with a 16 ms window shift. For each frame, a
512 point STFT was performed and then the IRM training target
with 257 dimensions was generated. In order to be consistent
with the compression methods, the first dimension of IRM was
discarded to obtain a 256 dimension training target and it was
padded back with zeros in the testing stage. The dimension of
the complementary acoustic features is also 256. The zero mean
and unit variance normalization are applied to the input features
with the global mean and variance values before feeding into
the models in both training and testing stage. Each dimension
of the global mean and variance values is computed from the
corresponding dimension of the input features in the training
dataset.

In the experiments, we first trained MLP and LSTM models
without compression as the baseline models. In the MLP model,
three prior frames and the current frame were connected as the
input to incorporate the temporal context information and keep
it as causal model while only the mask of the current frame
was estimated. From the input layer to the output layer, the
MLP model had 1024, 1024, 1024, 512, 512, 512, 512, and
256 units, respectively, resulting in 3.54 million parameters in
this MLP model. The Rectified Linear Unit (ReLU) activation
function was used for the hidden layers while sigmoid activation
function was used for the output layer. The complementary
feature without frame expanding and the IRM training target
were adopted by the LSTM model. The LSTM model had three
LSTM hidden layers with 512 units and one fully-connected
layer stacked after the LSTM layers with 256 sigmoid units.
The parameter number of this LSTM model was 5.90 million.

During the model training process, the mean square error
(MSE) of the estimated mask and the target mask was used as
the loss function. The Adam optimizer [41] was utilized with the
learning rate first set to 0.0005 and then decreasing 5% every
4000 or 1000 training steps respectively for MLP and LSTM
models. The dropout technique [42] was employed to avoid
potential model overfitting with the dropout rate of 0.3. The

TABLE II
THE FIXED Ik AND Jk IN MPO DECOMPOSITION FOR THE FOUR DIFFERENT

WEIGHT MATRIX SHAPES IN THE MLP MODEL STRUCTURE

MLP and LSTM models were trained with a minibatch size of
1280 at the frame level and 60 at utterance level, respectively.
The total number of training epoch was 50.

C. Comparison Methods and Performance Measures

We compare the proposed MPO-based method with the
widely-used pruning method [23] at the different compression
rates varying from 5 to 100 times. In the pruning method, the
unnecessary elements in the weight matrix are eliminated, which
means setting these elements to zero to remove the connections
with the low weights between the layers of a neural network.
During training, the connections with the low weights are re-
moved iteratively based on their magnitude. In the experiments,
both MLP and LSTM models were trained for speech enhance-
ment with the pruning and MPO-based compression methods.

To evaluate the performance of the MPO-based and pruning-
based compression methods, they are applied into the MLP and
LSTM-based speech enhancement approaches. For the speech
enhancement performance evaluation, several objective mea-
sures were used, including the short-time objective intelligi-
bility (STOI) [43], the perceptual evaluation of speech quality
(PESQ) [44], and global SNR.

V. EXPERIMENTAL RESULTS AND ANALYSIS

We evaluate the MLP and LSTM models before and after
compression in two different monaural speech enhancement
tasks, Task I and Task II, as described in Section IV-A . In both
tasks, the speech enhancement performances with the pruning-
and MPO-based compression models are compared at different
compression rates.

A. Evaluation of the Compressed MLP Models

1) Detailed Settings of the MPO and Pruning-Based Com-
pression: In the pruning method, the sparsity of weight matrices
is set to get the compression rate of an MLP model. However,
in MPO-based method, there is no such simple setting to get the
given compression rate, as parameters Ik, Jk and Dk described
in Section III-B are all adjustable. For convenience, we only tune
Dk to get the given compression rate with the fixed Ik and Jk.
There are four different weight matrix shapes in the MLP model
structure. We used the same MPO decomposition format for the
weight matrices with the same shape. The fixed Ik and Jk for the
different weight matrices are shown in Table II. The values of
the tunable bond dimension Dk at different model compression
rate are shown in Table III.
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Fig. 3. The evaluation results of the speech enhancement performance for the MLP models with IRM estimation in noise dataset B and C averaged among noise
types and SNRs.

TABLE III
THE VALUE OF THE TUNABLE BOND DIMENSION D IN DIFFERENT MODEL

COMPRESSION RATE IN THE MLP MODELS

2) Evaluation Results in Speech Enhancement: For the MLP
models, the evaluation results of the speech enhancement in
Task I are shown in Table IV. As we see, the MLP model with-
out compression gains 9.09% STOI, 0.58 PESQ, and 8.89 dB
SNR improvements on average at all the mixing SNR levels
in comparison with the noisy speech. These results confirm
the effectiveness of the MLP model in monaural speech en-
hancement task. In terms of the compressed MLP models,
the MPO-based compression method outperforms the pruning
method at all compression rates. With the pruning methods, the
speech enhancement performance decreases with the increasing
of compression rate. In contrast, the MPO-based method shows
the relatively small performance decrease. However, when the
compression rate is small (e.g., 5, 10, 15), the performance of
the MLP models with MPO-based compression gains further
improvement in PESQ and SNR. These results demonstrate that
the MPO-based compression method can be considered as a reg-
ularization for the model to reduce the redundance parameters.
In the cases with the high compression rates, the MPO-based
method can still achieve satisfactory performance. For example,
only 0.85% STOI, 0.05 PESQ, and 0.14 dB SNR performance
losses are respectively introduced when the compression rate
is 100 where 35.4 thousands parameters are involved in this
compressed model.

Fig. 3 shows the evaluation results of the speech enhancement
for the MLP models in Task II. The STOI, PESQ, and SNR
results are shown in the left, middle and right panels, respec-
tively. We evaluate the compressed models by both compression
methods respectively in the matched noise environments using
noise dataset B, referred as pruning-B and mpo-B, and in the
mismatched noise environments using noise dataset C, referred
as pruning-C and mpo-C. The results are averaged over all the

noises in each noise dataset and all mixing SNR levels. We
see from the results that the MLP models without compression
gains satisfactory speech enhancement performance in the mis-
matched noise condition. The performance of the compressed
models in the matched noise condition is better than the one
in the mismatched condition for both compression methods at
the same compression rate. With the increase of compression
rate, the performance of both methods decreases. However, the
decrease for the MPO-based method is much slower than for
the pruning method. The performance of MPO-based method
outperforms the pruning method at the same compression rate.

B. Evaluation of the Compressed LSTM Models

1) Detailed Settings of the MPO and Pruning-Based Com-
pression: As described in Section III-C, there are two weight
matrices in an LSTM layer, the input-to-hidden weight matrix
W and the hidden-to-hidden weight matrix U. In MPO-based
model compression method, both weight matrices are decom-
posed. Therefore, the parameters including factorization factors
IWk , JW

k , IUk , JU
k and bond dimension factors DW

k , DU
k are

adjustable. Similar to the case with the MLP models, we fixed the
factorization factors while three decomposition solutions were
used at different compression rate. The decomposition solutions
are shown in Table V, in which layers LSTM1, LSTM2, LSTM3,
and FC are the first, second, third LSTM layers, and the one
fully-connected layer, respectively. The bond dimension factors
for the two weight matrices in an LSTM layer are identical
to each other and tuned to achieve a given compression rate.
The decomposition solution and the value of the tunable bond
dimension at different model compression rates can be found
in Table VI. In this paper, we have done the decomposition
just by convenience. In fact, it can be argued and veried by
examples that when the network is away from under-tting,
dierent factorization manners should always produce almost the
same result as discussed in the supplemental material of [31].
In the pruning method, we only need to determine the sparsity
of weight matrix which is the same as the case with the MLP
model.

2) Evaluation Results in Speech Enhancement: For the
LSTM models, the evaluation results of the speech enhancement
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TABLE IV
THE EVALUATION RESULTS OF THE SPEECH ENHANCEMENT PERFORMANCE FOR THE MLP MODELS WITH IRM ESTIMATION AVERAGED

AMONG NOISE TYPES IN THREE SNR (−5, 0 AND 5) ENVIRONMENTS

TABLE V
THE DIFFERENT MPO DECOMPOSITION SOLUTIONS FOR DIFFERENT LAYERS IN LSTM MODEL STRUCTURE

TABLE VI
THE DECOMPOSITION SOLUTIONS AND THE TUNABLE BOND DIMENSION

VALUES AT DIFFERENT MODEL COMPRESSION RATES

FOR THE LSTM MODELS

in Task I are shown in Table VII. These results also confirm the
effectiveness of the LSTM model in monaural speech enhance-
ment task. Actually, in comparison, it outperforms the MLP
model. We see from the results that the LSTM model without
compression respectively gains 10.8% STOI, 0.77 PESQ, and
9.34 dB SNR improvements on average of all mixing SNR levels
in comparison with the noisy speech. In terms of compressed
models, the speech enhancement performance decreases with
the increase of compression rate for both compression methods.
Again, the MPO-based compression method outperforms the

pruning method in all evaluation measures and compression
rates. In the case with the high compression rate, for example 100
times, the compressed model with the MPO-based compression
method can still achieve satisfactory performance respectively
with only 1.97% STOI, 0.2 PESQ, and 0.5 dB SNR losses with
only 59.0 thousands parameters.

The evaluation results of the speech enhancement for the
LSTM models in Task II is shown in Fig. 4. The STOI,
PESQ, and SNR results are shown in the left, middle and
right panels, respectively. The results of both compression
methods in the matched and mismatched noise environments
are plotted in pruning-B, mpo-B, pruning-C, and mpo-C. The
results are averaged among the noises in each noise dataset
and all mixing SNR levels. Similar to the case of Task I, the
LSTM model without compression obtains satisfactory speech
enhancement performance in the matched and mismatched noise
environments and outperforms the MLP model. However, there
is still a gap between the performance in mismatched and
matched noise conditions. In terms of compressed models, the
advantage of the MPO-based compression method is readily
shown in comparison with the pruning method at the same
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TABLE VII
THE EVALUATION RESULTS OF THE SPEECH ENHANCEMENT PERFORMANCE FOR THE LSTM MODELS WITH IRM ESTIMATION AVERAGED AMONG NOISE TYPES

IN THREE SNR (−5, 0 AND 5) ENVIRONMENTS

Fig. 4. The evaluation results of the speech enhancement performance for the LSTM models with IRM estimation in noise dataset B and C averaged among
noise types and SNRs.

compression rate. As the number of parameters in the LSTM
model is lager than that in the MLP model and the LSTM model
gains better speech enhancement performance, the advantage
of the MPO-based compression method in comparison with the
pruning method for the LSTM model is not so significant as
for the MLP model. In some cases, such as SNR evaluation at a
compression rate of 50 times in the mismatched noise condition,
the pruning method shows better performance. Nevertheless, the
MPO-based method outperforms the pruning method overall.
The effectiveness of the MPO-based compression method for
LSTM model in speech enhancement can be confirmed.

C. Computational Complexity Analysis of the Compressed
Model

Except the reduction of model parameters, the computational
complexity is also an important aspect in the real application
of speech enhancement. In this subsection, we calculate the
number of multiplication operators in the testing stage of the
uncompressed and compressed models. We plot the compression

Fig. 5. The computation increase times of the compressed MLP models in
different compression rates.

rate against the increase times of computational cost for both
compressed MLP and LSTM models, as shown in Figs. 5 and 6.
As described in Section V-A1, the number of local tensor in
MPO decomposition format of the MLP model is fixed and
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Fig. 6. The computation increase times of the compressed LSTM models in
different compression rates.

the compression rate is increased with the decrease of the bond
dimension. As shown in Fig. 5, the computation increase times of
the compressed MLP model decrease with the increase of com-
pression rates. In the compression rate of about 100 times, the
computational complexity approaches that of the uncompressed
model. Different from the compression of MLP model, we use
three different MPO decomposition solutions for LSTM model
compression as described in Section V-B1. The computation
increase times of the compressed LSTM model vary in different
solutions. Meanwhile, in the same solution, the computation
increase times decreases with the increase of compression rates,
such as from the compression rate of 25 to 100 times in which
the solution C is used. In LSTM model compression, the compu-
tational complexity approaches that of the uncompressed model
with the compression rates of 5, 20, 75 and 100 times and there
is no large increase overall. These analysis means that the MPO
decomposition format can be carefully selected to maintain or
reduce the computational complexity as well as compress the
quantity of model parameters.

VI. CONCLUSION AND DISCUSSION

In this paper, we propose a novel model compression method
based on matrix product operators to reduce model size and
apply it into the DNN-based monaural speech enhancement task.
In the MPO-based compression method, we replace the weight
matrices using the MPO decomposition format in the linear
transformations of the MLP and LSTM models. We evaluate
the models at different compression rates for the IRM-based
speech enhancement. The experimental results show that our
proposed MPO-based method outperforms the pruning method
in terms of speech enhancement performance at the same com-
pression rate. Meanwhile, further improvement can be obtained
by the MPO-based compression at a low compression rate,
which means it can be considered as regularization process to
reduce the redundant parameters. In comparison with the other
methods, the MPO-based model compression method is more
suitable for a platform possessing the limited memory resource
and the high computational ability for tensor product, especially
in cloud-free applications, as there is a sequence of multipli-
cations for high-dimensional tensor in the compressed model.
However, the computational complexity varies in different MPO

decomposition solutions and decreased with the compression
rate in the same solution. The MPO decomposition format can
be carefully selected to maintain or reduce the computation com-
plexity as while as compress the number of model parameters.
Furthermore, the MPO-based model compression method can
be readily integrated to any network models with the linear
transformations and trained end-to-end to work together with
the rest of models in a very efficient way.
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